ECTURE +2 RIGId BoDY DYNAnIC 工Ap1CAT105FA。R工 GENERAL ROTATIONAL JYNMICS EULER'S EQuATIoN of MOTIoN TORQVE fREE SPECIAL CAsEs PRIMARY LESSONS 3D RoTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'sE。.A.PR∞N10 E STARTING Pot FoR ALL A/s s/c DwAnIcs soLuTIONs To EULERs ERvATrows ARe DAPL巨,B叭 T WE CA DE VE LDP Goo0 GEOMETRIC VISVALIZATION TOOLS
1- Now CAN DEVE LOP THE FULL SET OF RoTAT IONAL 0YNAuICs: TRW/sPoRT THM =R王 X H b:pN昕TEsB0Y AN GVLAR VEbOcIT of FRA心E B。 Y URT INERTIAL ND山, E ASSUME THAT WE ARE USIN丹FME FRTE600y训M肝我 CENTERED升 THE CENTER OF MAss AND FIXED TO THE BoDy INERTIA VIAL UES FIXEO 工 K VECToRs of RECALL,工F sWxi+uyJ十 BoDy FRAME 乐小 xi+Wyj+ SUMMARY M= H °+x() GENERAL FORM OF ROTATIONAL DYNAMICS
°正 E NOW USE T80 y FRAME,cA人 认 RITE TME5 E IN MATRIX F0川: 工W6 工RW 工工y工2 工工工 工2x工x工2 VERY COMPLEx FOR F心Lre SIMPLIF1E5工F妩455 ME THAT B0y FRAME ALIGNED WITH PRINCI PAL AXEs >I8 Yy O REDUCES TO EULERS UATLONS of MOTIoN A y 工x山x+( y wW 工 +(工
3 E VLER'S ER0ATIou5 NoNLWEAR, CouPLED, FEW ANALYTIC SOLOTIONS TYPICALLY TWo PROBLEMs OF INTEREST o GIVEN M WMAT IS THE ResPowSE oF THE SYSTEM(GIVEN A MOTION, WMAT MUST M BE?) 3 IN THE ABSENCE OF M TOR&VE FREE WMAT WoU LO THE MOTION OF THE BODY BE O GEN MOTION FINO M IS RELtTIVELy5(MAPLE MUCN MARDER THE OTHER WAY( GIVEN M, FINO 4(+) REQUIRES SOLUTION OF THE COUPLED NONLINEAR EQvATION S- FEW AN ALT(C ANSWERS EASILy DoNE NUMERICHLLy 中xRME ② CAN GWE A Lo°0 METRIC TASIGHTS 工川ToWAτ TYPES DF MOT1 DNS OCGUR MoMENTUM t ENERG Eui fsiS →T0 RQvE FREE” MOTION ONLY
l0SD-4 AMPLE EER十 Jo HNST 37 SHAET WEI GMS 16-I0 ROTATES AT CoNSTANT RATE W=Q RAO/SEC FNRE升 CTIONS AT bINTS SOLUTION FI FRAME xyZ AT COMG WHICH ROTATE TH THE FRAME USE POINT G AND FRAME XY'z CAN CALCULATE THE工 JERTIAS 2Ma lo Ma 工x CAu CALCULATE THE REST BUT THIS IS ALL WE NEE0, SINCE Hg=I&WG AN EASILY SEE TH HcA0心G YPICAL OF 30 ROTATIONS ARE NOT ALIGNED BUT RARELY5EEN工N PLANAR PROBLEMS
To FINd REACTIoNS, NEE To FIND MG 5∈TM=H W so Mc IS NON-ZERo DUE To THE NON-ZE Ro CROSs-MOMENT xZ CAN THEN FIND THE REATIDNS AT POINTS A, B To APPLy THIS MOMENT A8 VT THE y"-×s DI RECT ION A B-2 Ma 今F0 RcE COuPLE INz′01RETN,山HCH ROTATES WITH THE FRAME NOTE:Ir IS THI5 TYPE OF IMBALANCE IN A CRANK SHA FT THAT CAN CAUSE DAMAGE τ01 E MOUNT
b背-6 STA BI LITY OF TORQUE FREE MOT(o M CA小 GAIN A LOτ0⑩sGBY CoNSIDERING SPECIFIC TyPes F MGTIDNS Awo THEN SEEING How THE VEHICLES MOTION WBULD RE SPONO TD SMALL PERTURBATIONS MOTION SIMILAR 工小T升LADT0N 升8LE CONSIDER ROTATION ABOUT OJE PRINCIPAL AXIs w= W. X, Y, Z N Bo0Y. FRAME. NOw A00 A SLIGWT PERTURBATION To THIS MOTloA ASSUME TORQvE FKEE PERTURBAnoN 「W4则山LA TO HOPEFWULY SMALL CHANGES To Wy wZ →性0千0FD升sAYT0EDcT 5Uxlt), dwy(t) Wzlt) NOTE: PERTURBED: MOTION MUST 5ATISFY EULER'S ERVATIONS
0→7 PERTURBED, TORQUE FREE EULER's )0:工x(山+5)+(工n-工) z 工 +(工xx)(+) +(工w-工x)(w+k) Y POINTS: 。 CONSTANT J以κ,dy,z LINEARIZE EoM By DRoPPING PRo DUCTs of dus EG.了 +wJw 心z+ 山EAR忆EF0RM X CON ¥Y yx 2=0 工 工 J认、 COMBINE:(oFERENTIATE FIRST ONE) : 工孓 Wy
D,FFERENTIAL EQUA TION y+4 Y y t-A +6,e △rF> A0 EXPoNENTIAL GROwTH xN如心y 七 UNSTA色LE 工No0cAsE 工 工 工yt 2 FOR A> NEED: 工 工 AJ0xx>工zz STABLE 工>工xAND工z 22> CASES 0coRs0sTb-6EA业e∈红 MOMEN0F工NRT升 CoRRESPoA05 To IXX BEING THE SnftLLES · RECALL THAT WE ARE SPiN升607xxs
峰-9 6 BSERVATIONS 一工 F INITIAL SPIN ABOUT AN INTERME01ATE Ax15 ERT A yY 工xy>工 THEN SPIN UN STABLE 5P|NA&orM升/AxEs0FeT ARE STA BLE (oNLy NEUTRAL) EXAMPLE URTHER THDUGHTS: ROTATIONAL KINETIC ENERGY T=2W61wg 8 or=左工xM 工 NoE*化 E RNAL MOMENTS,HFED 士以 工 工5工*×A山AA工ERT14, THEN TRr工 THE MAXIMUMⅦ Lve Pos58LE MAXIMUM千 MIN VALVE