针对目前锂离子电池寿命预测结果不准确的问题,提出了一种多模态分解的锂离子电池组合预测模型,从而学习锂离子电池退化过程的微小变化。该方法在单一长短期记忆(LSTM)预测模型的基础上,采用了自适应噪声完全集成的经验模态分解(CEEMDAN)算法将锂电池容量分为主退化趋势和若干局部退化趋势,然后使用长短期记忆神经网络(LSTMNN)算法分别对所分解的若干退化数据进行寿命预测,最后将若干预测结果进行有效集成。结果表明,所提出的CEEMDAN?LSTM锂离子电池组合预测模型最大平均绝对百分比误差不超过1.5%,平均相对误差在3%以内,且优于其他预测模型