网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(1768)
北京大学:《高等代数》课程(第三版)教学资源(讲义)第六章 线性空间(6.1)集合·映射
文档格式:DOC 文档大小:218.5KB 文档页数:4
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西
北京大学:《高等代数》课程(第三版)教学资源(讲义)第七章 线性变换(7.9)最小多项式
文档格式:DOC 文档大小:101KB 文档页数:2
根据哈密尔顿一凯莱定理,任给数域P上一个级矩阵A,总可以找到数域 P上一个多项式f(x),使f(A)=0.如果多项式f(x)使f(A)=0,就称f(x)以A 为根当然,以为A根的多项式是很多的,其中次数最低的首项系数为1的以A为 根的多项式称为A的最小多项式这一节讨论应用最小多项式来判断一个矩阵能 否对角化的问题
北京大学:《高等代数》课程(第三版)教学资源(讲义)第八章 λ-矩阵(8.5)初等因子
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
北京大学:《高等代数》课程(第三版)教学资源(讲义)第九章 欧几里得空间(9.4)正交变换
文档格式:DOC 文档大小:83KB 文档页数:2
定义9欧氏空间V的线性变换A叫做一个正交变换如果它保持向量的内积 不变,即对任意的,都有a,B∈V,都有 (Aa, AB)=(a, B)
北京大学:《高等代数》课程(第三版)教学资源(讲义)第九章 欧几里得空间(9.8)酉空间介绍
文档格式:DOC 文档大小:114KB 文档页数:3
定义14设V是复数域上一个线性空间,在V上定义了一个二元复函数,称 为内积,记作(a,B),它具有以下性质:
北京大学:《高等代数》课程(第三版)教学资源(讲义)第十章 双线性函数与辛空间(10.3)双线性函数
文档格式:DOC 文档大小:306.5KB 文档页数:7
定义3V是数域P上一个线性空间,f(a,B)是上一个二元函数,即对V 中任意两个向量a,B,根据f都唯一地对应于P中一个数f(a,B)如果f(a,) 有下列性质:
北京大学:《高等代数》课程(第三版)教学资源(PPT课件讲稿)第七章 线性变换(7.4)特征值与特征向量
文档格式:PPT 文档大小:619.5KB 文档页数:25
一、 特征值与特征向量 二、 特征值与特征向量的求法 三、 特征子空间 四、 特征多项式的有关性质
北京大学:《高等代数》课程(第三版)教学资源(PPT课件讲稿)第七章 线性变换(7.5)对角矩阵
文档格式:PPT 文档大小:570.5KB 文档页数:27
一、可对角化的概念 二、几个引理 四、对角化的一般方法 三、可对角化的条件
北京大学:《高等代数》课程(第三版)教学资源(讲义)第九章 欧几里得空间(9.2)正交基
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.1)欧几里得空间
文档格式:DOC 文档大小:98KB 文档页数:3
设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
首页
上页
170
171
172
173
174
175
176
177
下页
末页
热门关键字
中药
哲学原理
医学科研方法
叶片机原理
细胞介导
物理治疗学
世新大学
控制器
教务管理
基因作图
化工分离技术
分销
法律政策与公共管理
电力技术
成功学讲座
超滤系统
长江大学
草坪生态学
PPT
flash
C语言程序设计
《随机分析》
DM设计
DSP原理与应用
Engineering
ERP软件应用
Excel与统计学
FLASHMX应用
flash动画]
FLUENT与流体力学
GIS应用
GMDSS设备与业务
GOOD
History
HS编码
html5
HUMAN
IC原理
INTERNET与多媒体应用
ISO9126
搜索一下,找到相关课件或文库资源
1768
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有