点击切换搜索课件文库搜索结果(22)
文档格式:PPT 文档大小:499KB 文档页数:34
热分析(thermal analysis),顾名 思义,可以解释为以热进行分析的一 种方法。1977年在日本京都召开的国 际热分析协会(ICTA)第七次会议上, 给热分析下了如下定义:即热分析是 在程序控制温度下,测量物质的物理 性质与温度的关系的一类技术
文档格式:PDF 文档大小:264.42KB 文档页数:6
建立了闪光法测量半透明材料热扩散率的一维瞬态导热-辐射耦合换热数学模型,采用基于控制容积的离散坐标法分析求解激光脉冲在半透明材料内的温度响应,并与由热四端网络法得到的半解析解进行了对比和验证.研究结果表明:两种计算方法在各种计算条件下得到的结果吻合很好.数值方法更灵活,可以处理物性非线性问题,但计算时间较长;半解析法的计算速度非常快,但只能处理常物性问题.此外,本文对试样吸收系数、辐射边界、厚度及试样表面的热损失等因素对温度响应的影响进行了对比分析
文档格式:PDF 文档大小:2.07MB 文档页数:69
2.1 概述 2.2 温度检测与变送 2.3 压力检测与变送 2.4 流量检测与变送 2.5 物位检测与变送 2.6 智能检测仪表 2.7 检测系统数据处理方法 2.8 软测量与先进检测的应用
文档格式:PDF 文档大小:1.06MB 文档页数:6
研究了含硅量为1.5%(质量分数)的高硅马氏体型热作模具钢(SDH3)的内耗谱与显微结构之间的关系.实验用SDH3钢采用1060℃保温30min油冷淬火和不同回火工艺处理.试样的温度-内耗谱(TDIF)的测量在振动仪上进行,采用自由衰减法,测量温度区间为室温至750℃.实验结果表明:SDH3钢的TDIF谱线主要是Snoek峰和SKK峰这两种机制的内耗峰;随着回火温度的升高,内耗峰峰高均逐渐降低,并且峰位也发生改变;当回火温度达到650℃时,内耗峰完全消失而只剩下背景内耗;随着回火保温时间的延长,内耗峰峰高和峰位都发生变化,并从扩散控制再分配机理的角度对这些变化进行了分析讨论
文档格式:PDF 文档大小:4.51MB 文档页数:7
锂离子电池在大功率应用下的热控制和热管理已成为制约电动汽车商业化的瓶颈,为解决此问题,运用微热管阵列设计锂电池模块散热系统,在开放条件下对电池模块进行恒流18 A(1 C)和36 A(2 C)充放电测试,通过测量布置微热管阵列前后电池表面温度可知:在1 C和2 C充放电倍率下,散热系统能够有效的降低电池模块的温度及电池间温度差异,将温度和温度差值分别控制在40℃与5℃之内,可以解决温度对电池寿命和容量的影响问题.基于实验数据,对其中一2 C工况热量进行了计算,得到通过微热管阵列的对流散热量达到模块生热量的40%
文档格式:PPT 文档大小:541.5KB 文档页数:2
5.6.1视准轴与水准轴不平行的误差 一、i角误差 二、交叉误差 三、温度变化影响i角
文档格式:DOC 文档大小:47.5KB 文档页数:5
第一节控制与控制程序 一、控制的含义与必要性 1、控制的含义 一般意义的控制就是指引导一个动态系统达成预定状态。例:空调器对室内温度的控 制。 管理学中的控制是指按照既定目标和标准,对组织活动进行监督、测量,发现偏差并分 析原因,采取措施使组织活动符合既定要求的过程
文档格式:PPT 文档大小:712.5KB 文档页数:57
第三章测量元件与变换器 3.1概述 一、参数的测量 1.参数检测:将被测参数经过一次或多次能量的交换,获得一种便于显示和传递的的 过程。 2.根据信号的不同,参数检测仪表可以分为气动检测仪表和电动检测仪表两类。 3.非电量的电测法: 将非电量工艺参数,如压力、温度、流量、物位等,转换为电流、电压等电路参数(信号)的检测方法
文档格式:PPT 文档大小:536.5KB 文档页数:11
在单片机的实时控制和智能仪表等应用系统 中,控制或测量对象的有关变量,往往是连续变 化的模拟量,如温度、压力、流量、速度等物理 量。这些模拟量必须转换成数字量后才能输入到 单片机中进行处理。单片机处理的结果,也常常 需要转换为模拟信号。若输入的是非电信号,还 需经过传感器转换成模拟电信号。实现模拟量转 换成数字量的器件称为模数转换(ADC),数字量 转换成模拟量的器件称为数模转换器(DAC)
文档格式:PDF 文档大小:722.13KB 文档页数:9
利用同步热跟踪原理, 提供一种测定微量气液反应热的研究方法.通过程序控制容器外壳温度与内部溶液同步升温, 减小温度梯度, 形成“热屏障”, 阻止溶液以热传导、对流、辐射的形式与外界环境进行热交换, 获得动态绝热环境, 提高微量气液反应热直接测量的精度, 减少样品用量, 无需热补偿.采用MEA (乙醇胺) 与MDEA (N-甲基二乙醇胺) 两类弱碱吸收液, 容积为15 mL, 分别在10%、20%、30%、40%和50%质量分数下, 测定吸收CO2的反应热.实验表明: 同步热跟踪法测量更为准确; 随溶液浓度的增加, MEA反应热先降低后升高, MDEA反应热逐渐降低; 在质量分数为20%~40%时, MEA、MDEA质量分数对反应热的影响不显著; 反应放热形成的升温曲线出现“下凹”现象
上页123下页
热门关键字
搜索一下,找到相关课件或文库资源 22 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有