点击切换搜索课件文库搜索结果(2072)
文档格式:DOC 文档大小:61KB 文档页数:8
课程简介: 本课程是一门高等农业院校四年制植物保护专业选修课,其理论性较强。植物免疫学是 植物病理学的一个分支学科,是研究植物抗病性及其应用的理论和方法的科学。主要介 绍植物免疫性的概念、分类、植物免疫性的机制、植物病原物的寄主专化性及其变异、 抗病性的遗传、植物免疫性的变异、寄主-病原物的相互关系、植物抗病育种、保持与 提高抗病性的途径等
文档格式:DOC 文档大小:82.5KB 文档页数:11
本课程较为全面,系统地阐述基因工程的基本理论和基本概念,并力求反映该学科的最新进展。基因工程是生物学科中的高级课程,主要针对高年级本科生开设。学生在此之前需要掌握普通生物学、遗传学、生物化学、分子生物学等方面的专业知识,以及分析化学、有机化学、无机化学、大学物理等方面的基本知识
文档格式:PPT 文档大小:632.5KB 文档页数:53
一、基因表达的概念 基因组(genome) 一个细胞或病毒所携带的全部遗传信息或整套基因。 基因表达(gene expression) 基因经过转录、翻译,产生具有特异生物学功能的蛋白质分子的过程。 基因表达是受调控的
文档格式:DOC 文档大小:1.43MB 文档页数:21
蛋白质的生物合成在细胞代谢中占有十分重要的地位。目前已经完全清楚,贮存遗传 信息的DNA并不是蛋白质合成的直接模板,DNA上的遗传信息需要通过转录传递给 mRNA。mRNA才是蛋白质合成的直接模板。mRNA是由4种核苷酸构成的多核苷酸, 而蛋白质是由20种左右的氨基酸构成的多肽,它们之间遗传信息的传递与从一种语言翻 译成另一种语言时的情形相似。所以人们称以mRNA为模板合成蛋白质的过程为翻译或 转译( translation 翻译的过程十分复杂,几乎涉及到细胞内所有种类的RNA和几十种蛋白质因子
文档格式:PPT 文档大小:1.87MB 文档页数:48
1. 杂种优势的概念及其利用价值; 2. 杂种优势的遗传学原理; 3. 杂种优势的成就; 4. 杂种优势育种的技术环节; 5. 杂种种子的生产; 6. 杂交育种小结
文档格式:PDF 文档大小:225.82KB 文档页数:12
有机物质运输与分配直接关系到作物产量的高低和品质的好坏作物的经济产量不仅取决于 光合产物的多少,而且还取决于光合产物向经济器官运输与分配的量。所以,研究有机物的 运输与分配不仅具有理论意义,而且具有重要的实践意义。 生物体的生长发育受遗传因素与环境信号的共同调节控制。以核酸和蛋白质为主的遗传信息 系统,决定生长发育的潜在模式,而生长发育的具体表现又受控于环境信号。本章还将讨论 植物细胞对环境信号的感受及信号的传递与转导问题
文档格式:PPT 文档大小:4.4MB 文档页数:27
免疫应答的遗传调控 分子水平的免疫调节 细胞水平的调节 整体水平的调节 第一节 免疫应答的遗传控制 1. TCR、BCR编码基因 2. MHC编码基因 第二节 分子水平的免疫调节 一.抗原的调节 二.特异性抗体的反馈调节 三.补体活化片段的调节 四.免疫细胞表面分子与相应受体的调节 第三节 细胞水平的调节 一.T细胞的免疫调节作用 二.B细胞的免疫调节作用 三.抗原活化诱导的细胞死亡(AICD) 第四节 整体水平的调节 神经-内分泌-免疫系统的网络调节 – 神经-内分泌对免疫的调节 – 免疫对神经-内分泌的调节
文档格式:PDF 文档大小:1.19MB 文档页数:10
针对单核学习支持向量机无法兼顾学习能力与泛化能力以及多核函数参数寻优问题,提出了一种基于群体智能优化的多核学习支持向量机算法。首先,研究了五种单核函数对支持向量机分类性能的影响,进一步提出具有全局性质的多项式核和局部性质的拉普拉斯核凸组合形式的多核学习支持向量机算法;其次,为增加粒子多样性及快速寻优,将粒子群优化算法引入了遗传算法中的杂交操作,并用此改进的群体智能优化算法对多核学习支持向量机进行参数寻优。最后,分别采用深度特征与手工特征作为识别算法的输入,研究表明采用深度特征优于手工特征。故本文采用深度特征作为多核学习支持向量机的输入,以交叉遗传与粒子群混合智能优化算法作为其寻优方式。实验选取合作医院数据集对所提算法进行训练并初步测试,进一步为了验证所提算法的泛化能力,选取公开数据集LUNA16进行测试。实验结果表明,本文算法易于跳出局部最优解,提升了算法的学习能力与泛化能力,具有较优的分类性能
文档格式:PDF 文档大小:1.14MB 文档页数:4
燕麦( Avena sativa L.)具有许多农业上重要的性状。但小麦和燕麦分类上属不同族,亲缘 关系较远,有性杂交十分困难。近年来,在双子叶模式植物上建立的只转移供体亲本部分遗传 物质的原生质体不对称融合技术为将燕麦有益性状导入小麦提供了可能。实现体细胞杂种定 向不对称的途径有两种:是利用细胞周期停滞在间期的叶肉细胞原生质体为供体亲本与作 为受体亲本的培养细胞原生质体融合由于二者分裂速度的差异,使前者染色体大量片段化 ( fragmentation)而被消除( Bravo et al.,1985; Dudits et al.,1988);再是利用高于致死剂量的 电离射线处理供体亲本原生质体使其遗传物质大量消除后再与受体融合( Gleba et al 1990)
文档格式:DOC 文档大小:637KB 文档页数:16
自从分子生物学家发现所有生物的遗传信息都是由DNA分子携带并发现了基因的密码 后,人们就一直致力于将分子生物学的这一划时代成果用于微生物细胞的改造,使得微生 物细胞能够结累更多的目标产物、合成新的代谢产物及转化原本不能转化的底物或有毒物 质。通过科学家们的不懈努力,基因工程已经成了工业微生物菌种选育的重要手段,正在 发酵工业中发挥愈来愈大的作用。可以说工业微生物遗传育种取得的重要进展是基因工程 发展的基础之一,现在又为工业微生物的育种提供了新的、有力的工具。两者始终存在着 十分密切的依赖关系
首页上页200201202203204205206207下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2072 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有