Over the past decade the variety of hosts and vector systems for recombinant protein expression has increased dramatically. Researchers now select from among mammalian, insect, yeast, and prokaryotic hosts, and the number of vectors available for use in these organisms continues to grow
26.1 Introduction 26.2 Carriers and channels form water soluble paths through the membrane 26.3 Ion channels are selective 26.4 Neurotransmitters control channel activity 26.5 G proteins may activate or inhibit target proteins 26.6 G proteins function by dissociation of the trimer 26.7 Growth factor receptors are protein kinases 26.8 Receptors are activated by dimerization 26.9 Receptor kinases activate signal transduction pathways
17.1 Introduction 17.2 The mating pathway is triggered by pheromone-receptor interactions 17.3 The mating response activates a G protein 17.4 Yeast can switch silent and active loci for mating type 17.5 The MAT locus codes for regulator proteins 17.6 Silent cassettes at HML and HMR are repressed 17.7 Unidirectional transposition is initiated by the recipient MAT locus 17.8 Regulation of HO expression 17.9 Trypanosomes switch the VSG frequently during infection 17.10 New VSG sequences are generated by gene switching 17.11 VSG genes have an unusual structure 17.12 The bacterial Ti plasmid causes crown gall disease in plants 17.13 T-DNA carries genes required for infection 17.14 Transfer of T-DNA resembles bacterial conjugation 17.15 Selection of amplified genomic sequences 17.16 Transfection introduces exogenous DNA into cells 17.17 Genes can be injected into animal eggs 17.18 ES cells can be incorporated into embryonic mice 17.19 Gene targeting allows genes to be replaced or knocked out
G1 RNA structure G2 Transcription in prikaryotes G3 The lac operon G4 The trp operon G5 Transcription in eukaryotes G6 Transcription of protein-coding genes G7 Regulation of transcription by RNA pol II G8 Processing of eukaryotic pre-mRNA G9 Ribosomal RNA G10 Transfer RNA
They are solid, thinner filament structures (6-8 nm, in diameter) composed of a double-helical polymer of the protein actin. And microfilaments play a key role of in virtually all types of contractility and location of cells as well as motility within cells