点击切换搜索课件文库搜索结果(259)
文档格式:PDF 文档大小:3.46MB 文档页数:8
为解决堆浸过程中由于大量矿粉存在而导致矿堆渗透性差、浸出率低等问题,以次生硫化铜矿为原料,开展了制粒试验研究.考察了不同制粒黏结剂对矿粉的黏结效果,确定了最佳的制粒黏结剂、制粒工艺以及制粒方法.通过正交制粒试验,明确了影响制粒试验的主要因素.试验结果表明:不同制粒黏结剂的黏结效果排序依次为:SFS-2 > SFS-3 >水泥>半水石膏> SFS-1 > SFS-0 >硅酸钠>阳离子型聚丙烯酰胺.当选用黏结剂SFS-2,黏结剂占矿粉质量分数为8%、加酸量为25 kg·t-1以及制粒过程喷水质量分数为30%时,所制矿团效果最佳.其湿强度达到94.62%,抗压强度达到417.44 N,矿团酸浸维持完好时间超过25 d,矿团形态基本维持不变,无明显破裂现象.正交制粒试验得到多因素对次生硫化铜矿制粒的影响由大到小依次为:黏结剂占矿石质量分数、加酸量和制粒喷水量.对选定的黏结剂进行细菌接种试验显示,黏结剂对细菌群落无明显影响.添加黏结剂试验组细菌数量为8.79×107 mL-1,未添加黏结剂试验组细菌数量为8.86×107 mL-1.对制粒后矿团进行浸矿试验结果显示,矿粉制粒后铜浸出率提高了12.74%,制粒通过增大矿物之间的孔隙,增加浸出液与矿石的接触,进而提高铜浸出率
文档格式:PDF 文档大小:2.41MB 文档页数:14
在现有工艺条件下,校验和完善二冷区铸坯凝固传热计算数学模型,开发三维二冷配水模型,解决目前设备状况下冷却水分布不均匀对铸坯温度的影响,从而控制铸坯表面质量,特别是铸坯的角部裂纹,同时对板坯连铸二冷配水制度进行改进和优化,使之满足高效连铸生产条件和改善铸坯质量的需要。提出压下参数计算公式,结合所开发三维二冷配水模型,优化现有压下工艺,提出并应用精准可控单段压下、非稳态压下控制,集中解决连铸板坯中心偏析、中心疏松和缩孔等内部质量问题。同时优化模型数据库,使之数据更加完备,模型计算更加准确,同时模型具备异钢种混浇过程二冷及压下控制功能,能够进行凝固终点W形预测与控制,可进一步提高模型适用性和准确性。模型开发并成功在多家钢厂现场应用,有效改善了铸坯裂纹和偏析等铸坯表面和内部的质量问题
文档格式:PDF 文档大小:727.63KB 文档页数:7
采用液相脉冲放电技术,通过改变脉冲电压、放电次数、Ni2+浓度、pH值,以及加入稀土添加剂(LaCl3、NdCl3)等途径,研究了制备工艺中各因素对Ni-P合金粉的结构、形貌、粒径以及对Ni2+转化率的影响.结果表明,脉冲能量是影响Ni-P合金粉粒径和Ni2+转化率的主要因素,提高脉冲电压或增加放电次数,Ni-P合金粉平均粒径明显减小,而Ni2+转化率增大.聚焦光束反射测量仪(FBRM)实时监测结果表明,在放电过程中Ni-P合金粉的形核、生长速率显著大于放电结束之后的形核、生长速率.加入LaCl3、NdCl3能使Ni-P合金粉粒径减小,LaCl3质量浓度为0.1g·L·时制得的Ni-P合金粉平均粒径为156nm,NdCl3质量浓度为0.05g·L-1时其平均粒径为72nm
文档格式:PDF 文档大小:987.61KB 文档页数:7
采用TMCP热轧及轧后两阶段控制冷却技术,在试验室制备了含Mo成分的X80级抗大变形管线钢,并利用扫描电镜和透射电镜等分析方法研究了不同冷却条件对组织与性能的影响.结果表明,采用两阶段控制冷却工艺的含Mo成分X80抗大变形管线钢为铁素体-贝氏体双相组织;随加速冷却中开冷温度降低,组织中铁素体含量增加,试样强度降低,屈强比降低,均匀伸长率提高;随加速冷却中终冷温度降低,贝氏体中M/A含量减少,尺寸更细小,分布更分散,试样强度变化不大但均匀伸长率显著提升.分析表明,当铁素体含量一定时,均匀伸长率与贝氏体中M/A密切相关,细小且均匀分布的M/A可提高加工硬化速率,推迟颈缩发生,使均匀伸长率升高.当加速冷却中开冷温度为690℃、终冷温度为450℃时,组织中铁素体的体积分数约为23%、晶粒尺寸约为5μm,M/A岛尺寸约为1μm,组织均匀性良好,试样得到最优的强度塑性匹配
文档格式:PDF 文档大小:21.2MB 文档页数:271
自上个世纪后半叶以来,人类科技便以人可阻挡之势迅猛向前发展。而其中最具代性 的当数计算机科学的进步。对于工程界的广大人士而言,这不可不谓是一种福音。在工程实 际应用的诸多领域里,为寻求可靠的、最优的工艺和技术方案,以往所凭借和依赖的直觉、 经验、实验和“尝试法”随着工艺要求的日益严格,追求质量所引发竞争的口臻激烈,已开 始显得力不从心倘若利用计算机这一先进段并辅以相应软件,进行虚拟加工,则可提 高产品加工质量,省时省力,降低成本 ANSYS正是在这样一种大前提下,应运而生它是目前世界范围内增长最快的CAE软 件,也是迄今为止上世界范国内唯一通过SO9001质量认证的分析设计类软件,是美国机械工 程师协会(ASME)、国核安全局(NQA)及近种专业技术协会认证的标准分析软件
文档格式:PDF 文档大小:4.81MB 文档页数:6
以聚丙烯腈预氧化纤维为先驱纤维,使其在真空烧结过程中原位转化生成碳纤维来增韧氧化铝陶瓷材料.利用热重–差热分析和X射线衍射研究了聚丙烯腈预氧化纤维的相结构和化学结构以确定制备复合材料的升温烧结工艺,并探讨了加压方式和聚丙烯腈预氧化纤维含量对复合材料组织结构和性能的影响.研究发现聚丙烯腈预氧化纤维在差热曲线上444℃左右的放热峰和X射线衍射图谱中17左右的衍射峰是由预氧化阶段残留的未充分氧化的聚丙烯腈分子引起的;而1073℃左右的吸热峰和25.5左右的衍射峰说明预氧化纤维在加热烧结过程中已开始向碳纤维转变.热压烧结制备的复合材料的力学性能明显优于无压烧结.随着聚丙烯腈预氧化纤维含量的增加,复合材料的密度和显微硬度降低,而断裂韧性则先升高后降低,当聚丙烯腈预氧化纤维体积分数为20%时,复合材料的断裂韧性最大,达9.39MPa·m1/2,说明原位碳纤维的生成提高了复合材料的断裂韧性,其增韧机制主要为纤维拔出和脱黏
文档格式:PDF 文档大小:949.28KB 文档页数:12
过去我国金属矿山φ150潜孔钻头主要使用刃片型钻头,因结构和工艺上存在问题,在f=10~12的中等硬度以上矿岩条件金属矿山使用寿命很低(一般为20~30米/个)。使用柱齿钻头后使用寿命有显著的提高,达到200米/个左右水平。措施是钻头结构改刃片形为柱齿形,外形及尺寸保证钻头有足夠强度並能有效传递冲击能量;在加工工艺上根据固齿的模拟试验和生产实践所总结出钻头硬度、加精度与过盈量的合理配比关系来提高固齿质量;在钻机工作参数中坚持高风压、低转速原则,以提高破岩效果减少钻头的磨损。文中列举了室内外的试验数据来说明上述措施的效果
文档格式:PDF 文档大小:1.5MB 文档页数:8
采用数学模拟方法研究钢轨钢连铸坯脱氢退火行为,分析不同退火温度、退火时间条件下连铸坯脱氢效果,优化了脱氢退火工艺.在脱氢退火过程中,连铸坯角部和边部的氢含量快速降低,而连铸坯中心氢含量在加热段后期开始降低;随着退火温度的升高,连铸坯中心脱氢的起始点明显提前,最大脱氢速率显著增加.随着均热段时间逐渐延长,连铸坯中心氢含量明显降低,但脱氢速率的增加幅度逐渐减小.通过优化脱氢退火工艺参数,连铸坯中心氢的质量分数能够降低至0.6×10−6,脱氢效果显著
文档格式:PDF 文档大小:754.62KB 文档页数:8
通过对国内某钢厂BOF-LF-CC工艺生产50CrVA弹簧钢进行全流程连续取样,综合分析了冶炼过程中总氧(T.O.)、N含量变化,非金属夹杂物的衍变规律,以及铸坯中大型夹杂物的特征.结果表明,LF精炼前T.O.和N的平均含量分别为106×10-6和13×10-6,铸坯中分别为15×10-6和39×10-6,LF过程脱氧效果明显;运输和浇注过程存在较明显的二次氧化现象,需要加强大包到中间包的保护浇注;铸坯中夹杂物主要为CaOAl2O3-MgO和CaOAl2O3-SiO2复合氧化物夹杂,其中Al2O3含量(质量分数)较高,达到60%~70%,未得到低熔点夹杂物,可通过适当提高精炼渣碱度,或喂入适量钙线促使夹杂物充分转变为成分更加均匀的低熔点夹杂物;大型夹杂物以CaO和CaOAl2O3-SiO2-(MgO)球状氧化物为主,还存在一定比例的纯Al2O3夹杂物,需要延长钢包弱搅拌时间使夹杂物充分上浮
文档格式:PDF 文档大小:1.27MB 文档页数:5
首钢京唐公司采用转炉铁水预处理脱磷工艺作为洁净钢生产平台,通过前期58炉冶炼实验,摸索出一套适和京唐公司生产实际的操作工艺,并在造渣制度、吹炼模式、温度控制等方面取得了重大突破,实现了稳定、高效生产低磷钢、超低磷钢的目标.脱磷炉终点磷的质量分数平均为0.017%,碳的质量分数为3.69%,脱磷炉终点平均温度为1350℃,并有10炉钢的脱磷炉终点磷的质量分数小于0.015%,最低为0.008%,达到了生产超低磷钢的预脱磷要求.对实验中影响脱磷效果的因素,如铁水硅含量,脱磷炉终点温度、终点碳含量、终渣碱度和氧化性等,进行了深入研究.分析表明当铁水硅的质量分数小于0.45%时,可以达到比较好的脱磷效果;脱磷炉的脱磷效果随终点温度的升高而逐渐变差,但为保证脱碳炉有足够的热量,脱磷炉终点温度控制范围为1350~1380℃;脱磷炉合理的碳含量范围应该在3.3%~3.8%之间;碱度控制在1.8~2.2即可满足脱磷炉的脱磷效果;通过增加矿石加入量,保持较高枪位可以提高冶炼过程渣中(FeO)含量,提高脱磷炉的脱磷效率
首页上页1920212223242526下页末页
热门关键字
搜索一下,找到相关课件或文库资源 259 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有