点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例 子来介绍
文档格式:PPT 文档大小:455KB 文档页数:16
.4极限存在准则与两个重要极限 本节先介绍极限存在准则利用它们来导出两个重要极限. 一、极限存在准则 准则I(夹逼定理)若Vx∈U(x,)(或|x>M),均有g(x)≤f(x)≤h(x)且limg(x)=limh(x)=A,则有limf(x)=A
文档格式:PPT 文档大小:561KB 文档页数:16
第二章函数的极限与连续 2.1数列的极限 2.2函数的极限 2.3极限的运算 2.4极限存在的准则与两个重要极限 2.5无穷小量与无穷大量 2.6函数连续的概念
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:PPT 文档大小:1.33MB 文档页数:29
在函数项级数中,有一类十分特殊的级数,它的每一 项都是x的幂函数,即un=anx\(n∈N).我们称这种函数 项级数为幂级数. 一.幂级数的概念
文档格式:PPT 文档大小:1.04MB 文档页数:23
若直接用二重积分的定义去计算它的值,将是复杂和困难,甚至是不可能的下面利用二重积分的几何意义来寻求二重积分的计算方法
文档格式:PPT 文档大小:752KB 文档页数:18
4.2罗必达(L'Hospital)法则 在第二章中我们已经知道,0型的极限可能存在,也可能不存在。 例:求1.lim=1→则原式极限存在
文档格式:PPT 文档大小:844.5KB 文档页数:15
因多元复合函数的求导法则在多元微积分中占有非常重要的地位,下面将一元复合函数的求导法则推广到多元的情形
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:428KB 文档页数:17
问题:根据极限的定义,只能验证某个常数A 是否为某个函数f(x的极限,而不能求出函数f(x的 极限.为了解决极限的计算问题,下面介绍极限的运 算法则;并利用这些法则和§2.1及2.2中的某些结 论来求函数极限
首页上页2223242526272829下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有