网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(2703)
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第十二章 全微分方程(12.4)可分离变量的方程
文档格式:PPT 文档大小:312.5KB 文档页数:15
特殊类型的一阶方程的求解 一阶方程的一般形式为F(x,y,y)=0 本节主要研究能把导数解出来的一阶方程
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第五章 定积分(5.2)定积分的性质
文档格式:PPT 文档大小:727KB 文档页数:22
定积分的性质 一、基本内容 对定积分的补充规定: b, (1)当a=b时,f(x)dx=0 (2)当a>b时,f(x)dx=-f(x)dx. 说明在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第二章(2.4)隐函数与参量函数微分法
文档格式:PPT 文档大小:888.5KB 文档页数:33
隐函数与参量函数微分法 一、隐函数的导数定义:由方程所确定的函数y=y(x)称为隐函数 y=f(x)形式称为显函数 F(x,y)=0y=f(x)隐函数的显化 问题隐函数不易显化或不能显化如何求导? 隐函数求导法则: 用复合函数求导法则直接对方程两边求导
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第一章 函数极限(1.7)极限运算法则
文档格式:PPT 文档大小:550.5KB 文档页数:32
极限运算法则 本节讨论极限的求法。利用极限的定义,从变 量的变化趋势来观察函数的极限,对于比较复杂 的函数难于实现。为此需要介绍极限的运算法则。首先来介绍无穷小。 一、无穷小 在实际应用中,经常会遇到极限为0的变量。 对于这种变量不仅具有实际意义,而且更具有理论价值,值得我们单独给出定义
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第七章 向量代数与空间解析几何(7.2)向量代数
文档格式:PPT 文档大小:1MB 文档页数:32
向量代数 一、向量的概念 向量:既有大小又有方向的量 向量表示:a或MM2 向量的模:向量的大小a1或|MM2 单位向量:模长为1的向量.a或MM 零向量:模长为0的向量
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第一章 函数极限(1.3)初等函数的连续性
文档格式:PPT 文档大小:201.5KB 文档页数:16
初等函数的连续性 一、四则运算的连续性 定理1若函数f(x),g(x)在点x处连续, 则f(x)±g(x),f(x)g(x),y(x) (g(x)≠0) g(x) 在点x处也连续 例如,sinx,cosx在(-t∞)内连续, 故tanx,cotx,secx,cscx在其定义域内连续
吉林大学:《线性代数》课程教学资源(讲稿)第四章 线性方程组 §4.2 线性方程组的解法
文档格式:PDF 文档大小:195.4KB 文档页数:14
第四章线性方程组 4.2线性方程组的解法 个线性方程组AX=B的解的数量有三种情况:0,1,∞ 对于第三种情况,逐个写出这些解是不可能的 解线性方程组的本质就是用一组可自由取值的变量 (称为自由变量)来表示其余的变量(称为主变量)使得对于自由 变量的任一组值,都能唯一确定主变量的值,它们一起构成方程 组的一个解.注意:主变量和自由变量的分法并不是唯一的 自然地我们应解决以下问题
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.4)因式分解
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.2)多项式的整除性
文档格式:PDF 文档大小:91.56KB 文档页数:5
1.2多项式的整除性 定义2.1设f(x)g(x)∈[x],若有h(x)∈[x]使得 f(x)=g(x)h(x),则称g(x)整除f(x),也称g(x)是f(x)的 二一个因式,f(x)是g(x)的一个倍式,记为g(x)f(x)(否则 二记为g(x)十f(x))进一步,若还有0
西北工业大学:《线性代数》课程教学资源(讲稿)第四章 向量组的线性相关性(4-3)向量组的秩与最大无关组
文档格式:DOC 文档大小:327KB 文档页数:7
4.3向量组的秩与最大无关组 1.向量组的秩:设向量组为T,若 (1)在T中有r个向量a1,a2,…,a,线性无关; (2)在T中有r+1个向量线性相关(如果有r+1个向量的话) 称a1,a2,…,a,为向量组为T的一个最大线性无关组, 称r为向量组T的秩,记作:秩(T)=r 注](1)向量组中的向量都是零向量时,其秩为0 (2)秩(T)=r时,T中任意r个线性无关的向量都是T的一个 最大无关组
首页
上页
259
260
261
262
263
264
265
266
下页
末页
热门关键字
基础化学原理
金融保险
私立华联学院
考察
精细化工产品的合成
组装电脑
英汉语对比
医学保健
序列分析
新媒体(营销)管理
湘潭大学
屋架设计
通信系统原理
税务会计
监狱管理
化工热力学
给排水
方程
法律经济学
电路电子技术
产业管理
《有机化学》
A+
MATLAB基础与应用
ORACLE数据库
pascal程序设计
二胡
东南大学
电脑
电缆材料
地震分析技术
代数
大学
材料加工
编辑
北方工业大学
ASP网络编程
DSP原理与应用
CPLD原理及应用
《化工原理》
搜索一下,找到相关课件或文库资源
2703
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有