点击切换搜索课件文库搜索结果(335)
文档格式:PPTX 文档大小:383.94KB 文档页数:18
西安电子科技大学:《高等代数》课程PPT教学课件(讲稿)第六章 线性空间 6.3 维数,基与坐标
文档格式:DOC 文档大小:5.35MB 文档页数:142
第一章 多项式 第二章 行列式 第三章 线性方程组 第四章 矩阵 第五章 二次型 第六章 线性空间
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系。 把全部等价类组成的集合(一个等价类视为等价类集合中的一个元素)记为V/M, V/M中的元素形如 a+m={a+luM}, 我们称a+M为一个模M的同余类,而将等价类中的任一元素称为等价类的代表元素。 命题同余类满足如下一些性质:
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给 出这个集合的元素所具有的特征性质
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:143KB 文档页数:3
2.1.4向量组的线性等价和集合上的等价关系 定义(线性等价)给定Km内的两个向量组
文档格式:PPT 文档大小:458KB 文档页数:20
在解决线性方程组是否有解的判别条件之后, 我们知道在秩A=秩A=n(方程组未知量个数)时, 方程组有唯一解。在秩A=秩A
文档格式:DOC 文档大小:188.5KB 文档页数:4
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.4 线性空间的基变换,基的过渡矩阵 4.2子空间与商空间 4.2.1 线性空间的子空间的定义
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系
首页上页2425262728293031下页末页
热门关键字
搜索一下,找到相关课件或文库资源 335 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有