点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:1.29MB 文档页数:8
通过固溶度积公式计算及热模拟实验,对不同热装和加热温度条件下的无取向硅钢铸坯中析出相进行了研究.在低于950℃热装时,铸坯中AlN的析出量和尺寸不再变化,但MnS和AlN-MnS的数量及平均尺寸随着热装温度降低而进一步增加,并在温度低于600℃时达到最大值后保持不变.与1200℃相比,1100℃加热的铸坯中AlN、MnS的总固溶量相对更少.相比850℃热装,600℃热装再加热到1100℃的铸坯中AlN和MnS的总固溶量更少,且AlN和MnS尺寸更大.合适的热装温度和加热温度分别为600℃和1100℃
文档格式:PDF 文档大小:449.99KB 文档页数:5
采用磁控溅射方法,获得了具有低饱和场巨磁电阻的Ni80Fe20/Cu由金属多层膜.在室温下,其磁电阻和层间耦合状态随Cu层厚度的增加呈振荡变化.在Cu层厚度tcu=1.0nm,2.2nm时磁电阻出现2个峰值分别为19.4%和11.7%,饱和场约为6.4×104 A/m和8×103 A/m,低温下(77K)磁电阻为对33.2%和27.6%.系统地研究了NiFe层厚度和周期数对多层膜磁电阻的影响.用真空退火方法对样品进行热处理,发现多层膜的磁电阻性能有明显改变
文档格式:DOC 文档大小:37.5KB 文档页数:5
1、课程简介该课程是农学、植保、园艺、农业资源与环境等专业的一门专业选修课,是根据相应的教学计划和专业要求而设置和编写的。 2、课程设置的目的绿色食品是以绿色生产方式从事种植、养殖和加工的综合生产体系。绿色食品的思想起源 于发达国家,它不仅是一种全新的种植模式和管理方式,更重要的是引进一种新的思想一推 广绿色食品标准,加强农业质量标准体系,创建农产品标准化生产基地。要使众多的生产者转 变观念,接受并建立绿色食品思想,必须从教育者优做起。 大学是培养高等人才的摇篮,大学生既是新思想、新观念和新技术的接受者,也是新思 想、新观念和新技术的传授者。因此,开这门课使绿色食品思想深入人心,这对农业生产结构 的调整,全面提高我国农产品的质量,增加农民收入、迎接WTO的挑战,保护和改善我国生态 环境,造福子孙后代具有重要的现实意义和深远的历史意义
文档格式:DOC 文档大小:38KB 文档页数:4
简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在 此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国 制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的 几点看法 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展 新兴高新技术产业和尖端工业(如信息技术及其产业
文档格式:PDF 文档大小:1.51MB 文档页数:11
为了研究煤自燃发火气体产物与煤分子官能团之间的内在联系,进一步揭示煤自燃发火过程的微观变化特性,利用程序升温实验装置和原位红外光谱分析实验系统,得出了气体产物生成量和活性官能团含量之间的关联性。结果表明:CO、C2H4等指标气体浓度伴随温度升高显示为抛物线模式增长;活性官能团中,随着温度的不断升高,脂肪烃含量先持续增大,之后开始逐渐下降,C=C双键含量不断下降,含氧官能团含量先趋于稳定后逐渐增加。根据指标气体浓度变化,获得了高温反应过程中的5个特征温度点,进一步将其分为临界温度阶段、干裂–活性–增速温度阶段、增速–燃点温度阶段和燃烧阶段4个阶段,并对三个高温氧化阶段进行关联性分析发现:在临界温度阶段,影响CO、CO2、CH4和C2H6气体释放的主要活性官能团是羰基;在干裂–活性–增速温度阶段烷基链和桥键发生大量断裂,影响气体产物的主要活性官能团是脂肪烃和羰基;在增速–燃点温度阶段气体浓度与羰基和羧基等官能团呈负相关。得出干裂–活性–增速温度阶段是高温氧化过程中的危险阶段,需在该阶段前对氧化反应进行控制,以减少人员和物质损失
文档格式:PDF 文档大小:1.76MB 文档页数:10
针对漏钢时结晶器铜板温度呈现出的“时间滞后”和“空间倒置”等典型特征,本文通过引入动态时间弯曲(DTW)和机器学习中的密度聚类(DBSCAN)方法,提取、汇集并区分结晶器温度的典型变化模式,在此基础上开发出一种新型的漏钢预报方法。借助动态时间弯曲度量不同拉速、钢种或工艺操作条件下结晶器热电偶温度的相似性,并运用密度聚类方法聚集和分离正常工况、黏结漏钢状况下的温度样本,在此基础上检测和预报结晶器漏钢。结果证实,相较于传统的逻辑判断和人工神经元网络预报结晶器漏钢的方法,基于聚类的漏钢预报方法无需人为设置阈值或参数,能够依据漏钢历史样本中温度变化的共性规律,提取并融合热电偶温度在时间、空间上典型的变化特征,准确区分和预报结晶器漏钢,具有较好的自适应性和鲁棒性
文档格式:PDF 文档大小:1.78MB 文档页数:9
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59
文档格式:PDF 文档大小:1.95MB 文档页数:11
针对平整轧制过程不同用途带钢对表面微观形貌的特殊要求,在批量跟踪电火花毛化轧辊、磨削轧辊和冷轧后带钢表面微观形貌的基础上,建立工作辊与带钢都可考虑真实表面粗糙峰的带钢表面微观形貌轧制转印生成模型,采用工业实验验证了仿真模型的准确性,并据此模型分析轧制前带钢已经具有表面粗糙度分别大于、等于、小于轧辊表面粗糙度时,带钢表面微观形貌的轧制转印行为与遗传演变规律。提出了负转印和转印饱和的概念,定义了两种极限轧制转印状态的描述指标— —负转印最大和转印饱和,研究发现当带钢表面粗糙度小于或等于轧辊表面粗糙度时,存在负转印最大点和转印饱和点;当带钢表面粗糙度大于轧辊表面粗糙度时,负转印最大点和转印饱和点重合。在此基础上,采用负转印最大点与转印饱和点对应的临界板宽轧制力,描述带钢表面微观形貌的遗传及演变规律,并系统仿真分析带钢屈服强度、带钢轧前表面粗糙度、轧辊表面粗糙度等工艺条件参数对于负转印最大点与转印饱和点对应的临界单位板宽轧制力的影响规律,发现随着带钢屈服强度增大和轧辊表面粗糙度增加,该临界单位板宽轧制力均增大;随着带钢表面粗糙度增大,负转印最大点对应的临界单位板宽轧制力增大,但转印饱和点对应的临界单位板宽轧制力却减小
文档格式:PDF 文档大小:1.35MB 文档页数:9
采用反应烧结法制备了MgAlON结合的镁质、镁铝尖晶石质和刚玉质试样,研究了不同主晶相对MgAlON单相结合相形成温度的影响及化学反应引起的体积膨胀和氧化物挥发对材料烧结的影响.结果表明:虽然用以形成MgAlON结合相的混合细粉的组成和数量都相同,但MgAlON结合的镁质、镁铝尖晶石质和刚玉质试样中形成MgAlON单相结合相的温度是不同的,依次呈升高趋势;MgAlON结合镁质试样在烧成过程中体积显著膨胀,MgO大量挥发,烧后试样镁砂颗粒和基质结合松散,密度低,强度小;MgAlON结合刚玉试样在烧成过程中体积膨胀小,氧化物挥发少,烧后试样刚玉颗粒和基质结合紧密,密度较高,强度较大;而MgAlON结合镁铝尖晶石试样烧成过程中的体积膨胀量、氧化物挥发量,烧后试样颗粒和基质的结合程度、密度和强度都介于前两者之间
文档格式:PDF 文档大小:783.09KB 文档页数:4
以MoO3、Si粉和Al粉为原料,采用机械化学还原法制备了Al2O3-Mo3Si/Mo5Si3纳米复合粉体.利用X射线衍射(XRD)、激光粒度分析仪(LPS)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和差热-热重分析(DTA-TG)等对复合粉体和球磨过程中粉体的固态反应过程进行表征.结果显示,MoO3-Si-Al混合粉体球磨5h后转变为Al2O3-Mo3Si/Mo5Si3复合粉体,反应为机械诱导的自蔓延反应.球磨20h后,Mo3Si、Mo5Si3和Al2O3的晶粒尺寸分别为27.5、23.3和31.8nm,产物具有纳米晶结构,粉体平均粒度为3.988μm,颗粒呈球形,分布均匀.DTA分析表明,复合粉体在机械化学反应过程中首先发生MoO3和Al之间的铝热反应,之后将发生一系列Mo和Si之间的反应,生成Mo5Si3和Mo3Si
首页上页2627282930313233下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有