点击切换搜索课件文库搜索结果(23)
文档格式:PDF 文档大小:992.33KB 文档页数:9
为了提高非平衡数据集的分类精度,提出了一种基于样本空间近邻关系的重采样算法。该方法首先根据数据集中少数类样本的空间近邻关系进行安全级别评估,根据安全级别有指导的采用合成少数类过采样技术(Synthetic minority oversampling technique,SMOTE)进行升采样;然后对多数类样本依据其空间近邻关系计算局部密度,从而对多数类样本密集区域进行降采样处理。通过以上两种手段可以均衡测试数据集,并控制数据规模防止过拟合,实现对两类样本分类的均衡化。采用十折交叉验证的方式产生训练集和测试集,在对训练集重采样之后,以核超限学习机作为分类器进行训练,并在测试集上进行验证。在UCI非平衡数据集和电路故障诊断实测数据上的实验结果表明,所提方法在整体上优于其他重采样算法
文档格式:PPT 文档大小:134.5KB 文档页数:15
本章内容 一、微机系统故障的产生原因、 二、微机系统故障的检查诊断步骤、 三、常用维修方法和工具、 四、自检程序(POST)在诊断测试中的应用、 五、微机的日常维护
文档格式:PDF 文档大小:548.5KB 文档页数:6
系统研究了面向复杂系统监测时变信号的实时故障检测与识别问题.采用滑窗Mallat小波快速变换克服传统小波变换的时域全局依耐性并提高计算效率,使之适应于实时故障检测;针对时变信号的故障模式识别难题,在故障检测基础上采用改进动态循环神经网络(improved dynamic recurrent neural network,IDRNN)进行智能故障识别.最后将滑动时窗小波检测模块及最优IDRNN网络模块嵌入某型完整卫星姿态控制系统仿真平台进行在线故障诊断.试验结果表明:实时条件下的滑动窗口小波变换与传统小波变换具有一致性,IDRNN对于时变信号识别具有较好的时域泛化能力,将滑窗移动时不变小波方法与IDRNN结合可以实现面向复杂系统监测实时信号的故障检测及复合模式分类
上页123
热门关键字
搜索一下,找到相关课件或文库资源 23 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有