∑ ∞ = − 0 0 )( n n n xxa = a0 + )(1 0 − xxa 2 2 0 −+ xxa )( +\+ n n xxa )( − 0 +\ 这样的函数项级数称为幂级数。幂级数的部分和函数 Sn(x)是一个n −1 次多项式。 为了方便,我们通常取 0 x = 0, 也就是讨论 ∑ ∞ n=0 n n xa = a0 + 1 xa 2 2 + xa +\+ n n xa +\, 然后对所得的结果做一个平移 x = 0 − xt ,就可以平行推广到x0 ≠ 0的情 况
1993年量子力学考研试题 设n)是粒子数算符N=的本征函数,相应之本征值为 n20),算符a和满足对易关系aa-a=1。证明:an)(其中 n≥1)和an)也是N的本征函数其相应的本征值分别为-)和+) 解:用粒子数算符N作用到an)上,即 Nan=aaan=laa a n-a GN n)-an)=(n-1 an 上式表明an)是N的本征态,相应的本征值为(n-1)
2.7 A linear system S has the relationship +∞ yn]=]gn-2k] k=-∞0 between its input xn] and outputy[n] g[n]=un]-un-4] (a)x[n]=[n-1]y[n=u[n-2]-u[n-6] (b)x[n=6[n-2]yn=u[n-4]-u[n-8 (c)S is time-varying
1 Induction Recall the principle of induction: Principle of Induction. Let P(n) be a predicate. If ·P(0) is true,an for all nE N, P(n) implies P(n+1), then P(n) is true for all nE N As an example let's try to find a simple expression equal to the following sum and then use induction to prove our guess correct 1·2+2·3+3:4+…+n·(mn+1) To help find an equivalent expression, we could try evaluating the sum for some small n and(with the help of a computer) some larger n sum