with x(0)=I exist and are unique on the time interval t E [ 0, 1] for allTER\.Then discrete time system(4. 1)with f(5)=r(, i)describes the evolution of continuous time system(4.)at discrete time samples. In particular, if a is continuous then so is f Let us call a point in the closure of X locally attractive for system(4. 1)if there exists
This lecture presents results describing the relation between existence of Lyapunov or storage functions and stability of dynamical systems 6.1 Stability of an equilibria