点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:163KB 文档页数:3
12.2.3一元多项式的判别式的定义 给定K[x]内一个n次多项式 F(x)=ax+axn-+…+an(a≠0) 设a1,a2,…an是它的n个根,令 称其为F(x)的判别式。显然,F(x)有重根其充分必要条件是D(F)=0 现在考察n元式
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:PDF 文档大小:439.53KB 文档页数:4
本文研究了N2/H2比对氮化钛涂层的晶格常数、硬度、沉积速率的影响,在N2/H2≈1/2时得到组成近似于化学计量的氮化钛,涂层硬度和沉积速率最高,涂层模具的寿命比不涂层的可提高4倍
文档格式:PDF 文档大小:581.74KB 文档页数:7
结合冶金热力学和凝固偏析模型分析了Ti-IF钢凝固过程中TiN的析出特点.Ti-IF钢凝固前期钢液中TiN夹杂无法生成,固相中TiN源自低温固相析出;凝固固相分数达到0.64时,Ti、N组元在凝固前沿富集程度增加,凝固前沿固相中开始有TiN析出;凝固末期,Ti和N的富集程度进一步增大,固液相中均能有TiN析出.采用扫描电镜分析了TiN在铸坯中的分布,从铸坯表层到中心TiN数量和尺寸存在显著变化:从铸坯表层向中心方向TiN尺寸不断增大,平均尺寸从1-2μm增大到5μm,在距离表层70-80 mm处尺寸达到最大;在铸坯厚度中间位置,TiN尺寸较大,平均尺寸为5μm左右;在铸坯中心TiN尺寸又有所变小,平均尺寸为3μm左右;在铸坯表层TiN密集程度较高,在铸坯中间和中心TiN数量密集程度显著降低.IF钢铸坯中TiN析出时机及其尺寸和数量与Ti、N组元偏析和凝固冷却速度关系密切
文档格式:PDF 文档大小:4.31MB 文档页数:13
本文是珠光体和珠光体-铁素体球墨铸铁齿轮弯曲疲劳极限应力σFlim测定的试验总结。作者根据13对齿轮的寿命试验结果,用最小二乘法求得疲劳曲线方程为σF3.23726N=2.941478×1011同时求得99%可靠度的疲劳曲线方程为:σF3.23726N=8.6050375×1010据此,确定当循环基数N0=5×106次时,其相应的弯曲疲劳极限应力为:当可靠度为99%时σFlim=29.4公斤/毫米2σFlim=20.4公斤/毫米2上述数值可供设计齿轮时参考
文档格式:DOC 文档大小:205KB 文档页数:4
第三章极限与函数的连续性 §1极限问题的提出 -(t+h)--gt2 (Newton) 1 2 -=gt+gh 然后令h=0,先h≠0,后h=0 (Cauchy) §2数列的极限 Def1.定义域为自然数的函数称为数列,记为{xn}xn=f(n)n∈N
文档格式:DOC 文档大小:174KB 文档页数:10
结构体的定义与引用 1定义结构体 定义有n个成员的结构体类型的一般形式: struct结构体类型标识符 {类型标识符1成员名1 类型标识符2成员名2; 类型标识符n 成员名n
文档格式:PDF 文档大小:1.25MB 文档页数:9
运用Gleeble-3500热力模拟试验机对700~1200℃温度范围内高锰钢Mn13单独加入钛(质量分数0.10%)、复合添加钛(质量分数0.11%)和钒(质量分数0.20%)后的高温热延性进行测试.采用扫描电镜和X射线能谱分析仪对不同温度下拉伸断裂后试样的断口形貌以及断口处的析出粒子进行了分析.温度-断面收缩率曲线表明在高锰钢中加入0.10%钛后,其断面收缩率出现了一定程度的下降,这表明钛的加入恶化了高锰钢的热延性;在此基础上加入0.20%钒,高锰钢的热延性出现了进一步的下降,即钛和钒的复合加入严重恶化了高锰钢的热延性.利用Thermo-Calc热力学计算软件对单独含钛以及复合含钛钒的高锰钢在700~1600℃存在的平衡析出相进行了计算,计算结果表明Ti (C,N)的平衡析出温度均约为1499℃,远大于其液相线温度,这说明Ti (C,N)在高锰钢的液相中就可以开始析出.扫描电镜-能谱分析结果表明在奥氏体晶界以及三叉晶界处存在大量的Ti (C,N)和(Ti,V) C粒子,这些粒子的出现抑制了动态再结晶的发生,并且加速了晶界附近裂纹的扩展
文档格式:PDF 文档大小:18.77MB 文档页数:10
进行了西澳超细粒磁铁精矿分别配加国产磁铁精矿和巴西赤铁精矿制备氧化球团矿的实验研究.结果表明,以100%西澳超细磁铁精矿为原料制备氧化球团矿时,球团预热及焙烧性能较差,在预热温度为1050℃、预热时间20 min及焙烧温度1300℃、焙烧时间40 min的条件下,预热球团和焙烧球团矿抗压强度分别为每个502和2313 N.西澳超细粒磁铁精矿配加40%国产磁铁精矿或20%巴西赤铁精矿时,球团适宜预热温度由1050℃分别降低到950和975℃,适宜的焙烧温度由1300℃分别降低到1250和1280℃;而且焙烧球团矿的抗压强度分别提高到每个2746 N和每个2630 N.焙烧球团矿的微观结构研究表明:配加国产磁铁精矿后,焙烧球团矿中Fe2O3晶粒发育优良,晶粒间互联程度提高,晶粒粗大,孔隙率低,固结更加紧密.配加20%巴西赤铁精矿时,焙烧球团矿中Fe2O3晶粒基本连接成片,Fe2O3晶体发育良好.优化配矿是改善西澳超细粒磁铁精矿球团矿预热及焙烧性能的有效途径
文档格式:PPT 文档大小:2.3MB 文档页数:24
2.3.3 小结 2.3.1 n阶行列式的定义 2.3.2 n阶行列式的计算(1)
首页上页2930313233343536下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有