点击切换搜索课件文库搜索结果(7502)
文档格式:PPT 文档大小:242.5KB 文档页数:7
利用函数的性态如函数的单调性、极值、凹性、 拐点、渐近线及基本性质如周期性、对称性等;再 利用描点(特殊选点)作图,就可比较准确地作出函数图 形.描绘函数图形的一般步骤是: (1)确定函数y=f(x)的定义域,讨论其周期性和对称性; (2)确定曲线的渐近线;
文档格式:PPT 文档大小:753.5KB 文档页数:24
链式规则 设z=f(x,y)(x,y)∈D,是区域D,CR2上的二元函数,而 g:D→R2, (u,v)→(x(u,v),y(uv) 是区域DCR2上的二元二维向量值函数。如果g的值域g(D)=D 那么可以构造复合函数 =fog= f[x(u,v), y(u,v), (u,).o 复合函数有如下求偏导数的法则
文档格式:PPT 文档大小:374KB 文档页数:25
函数展开成幂级数 由于幂级数在收敛域内确定了一个和函数,因此我们就有可能利用幂级数来表示函数。如果一个函数已经表示为幂级数,那末该函数的导数、积分等问题就迎刃而解
文档格式:PDF 文档大小:196.01KB 文档页数:20
复合函数求导法则 定理4.4.1 (复合函数求导法则) 设函数u gx = ( )在 x x = 0可导, 函数 y fu = ( )在u u gx = 0 0 = ( )处可导,则复合函数 y f gx = ( ( ))在 x x = 0可 导,且有 [ ( ))] ( ) ) f gx f u g x x x ( ′ = ′ ′( = 0 0 0 = f gx g x ′( )) ) ( ′( 0 0
文档格式:PDF 文档大小:199.34KB 文档页数:25
从定义出发求导函数 一些简单的函数可以直接通过导数的定义来求导函数: 常数函数 y C= 的导数恒等于零。 例4.3.1 求 y x = sin 的导函数
文档格式:PPT 文档大小:943.5KB 文档页数:23
设函数y=f(x)在a,b)内图形如下图: y=f(x)/ 在:处的函数值()比它附近各点的函数值都要小 而在处的函数值()比它附近各点的函数值都要大; 但它们又不是整个定义区间上的最小、最大者,而且 A将这样的点称为极小值点、极大值点
文档格式:PDF 文档大小:249.35KB 文档页数:24
Fourier 变换及其逆变换 前面关于 Fourier 级数的论述都是对周期函数而言的,那么对于 非周期函数,又该如何处理呢? 在 +∞−∞ ),( 上可积的非周期函数 f x( )可以看成是周期函数的极限 情况,处理思路是这样的: (1) 先取 f x( )在[ ,] −T T 上的部分(即把它视为仅定义在[ ,] −T T 上 的函数),再以2T 为周期,将它延拓为 +∞−∞ ),( 上的周期函数 f x T ( );
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的 某一邻域内具有连续的偏导数,且F(x,yo)=0, F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的 某一邻域内恒能唯一确定一个单值连续且具有连续 导数的函数y=f(x),它满足条件yo=f(x),并
文档格式:PPT 文档大小:2.18MB 文档页数:65
教学目标: 函数的概念、定义、调用和返回 带自定义函数的程序设计 递推算法 递归思想及算法实现 函数的参数传递方式 6.1 函数概论 6.2 递推 6.3 递归及其实现 6.4 指针与函数
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
首页上页3132333435363738下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7502 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有