点击切换搜索课件文库搜索结果(439)
文档格式:PDF 文档大小:38.02KB 文档页数:1
第一题 例如汽车导航系统,输入为期望速度,输出是实际的速度。控制器是导航控制计算机, 它将实际速度和需要的速度相比较,并相应设置油门的大小。汽车为受控对象,转速计充当 传感器,扰动的来源是变速箱的换档,电源电压的波动为噪声源。(当然,实际的导航系统 更复杂且包含更多的传感器,但是基本概念是相同的)
文档格式:PDF 文档大小:117.16KB 文档页数:5
一、超声波传感器 二、开放型
文档格式:PPS 文档大小:1.01MB 文档页数:31
一、温度的测量是生活中 二、设计一个恒温热水器:水温下降可以自动启动加热,当加热到需要的电压时停止加热,以保持水温恒定。你会选用什么传感器?传感器选用有什么原则?如何设计电路?
文档格式:PPS 文档大小:2.7MB 文档页数:14
一、学会用焦利秤测量弹簧的倔强系数。 二、学会用集成霍耳传感器测量弹簧振子的振动周期,并计算弹簧的倔强系数
文档格式:PDF 文档大小:5.91MB 文档页数:12
针对巴西圆盘荷载接触条件对巴西劈裂试验影响的问题,采用声发射监测系统开展线/非线荷载接触条件下低孔隙率砂岩巴西劈裂试验。直径为50 mm,厚度为25 mm的标准巴西圆盘按照同一种传感器三维布设方式布置8个Nano30传感器。在相同的荷载速率下,声发射监测Richter8系统对线/非线荷载两种荷载条件下的巴西圆盘进行准静态加载的波形信号连续记录。通过P波自动到时及网格坍塌搜索算法进行定位,在线/非线荷载条件下分别有1131和931个声发射事件被成功定位。圆盘的起裂位置均在圆盘非中心位置,对于非中心起裂的试验值可能低估了巴西抗拉强度。裂纹下半球极点密度投影分析表明,非线荷载条件下破裂面的局部扭曲程度大于线荷载。试样三维损伤演化结果表明,圆盘所受荷载面积大小,显著影响圆盘损伤累计的时间、释放能量的大小和裂纹扩展的稳定性。对有效声发射定位事件进行矩张量分解获取了两种荷载条件下各向同性部分(ISO)、纯双力偶(DC)和补偿线性矢量偶极成分(CLVD)频率百分比,并采用微裂纹破裂类型分类方法来定量分析震源机制,结果表明巴西劈裂对荷载条件并不敏感,两者均可以解释为近似平行于荷载方向上的张拉裂纹的萌生、扩展及贯通
文档格式:PDF 文档大小:590.4KB 文档页数:10
电子科技大学:《敏感材料与传感器 Sensitive Materials and Sensors》课程教学资源(课件讲稿)第六章 新型红外传感器 第1节 红外辐射的基本知识
文档格式:PDF 文档大小:1.2MB 文档页数:7
采用水热法和还原氮化法合成了菊花状形貌的氮化钛(TiN)纳米材料,并将其与还原氧化石墨烯(rGO)水热复合制备了氮化钛–还原氧化石墨烯(TiN-rGO)复合材料。利用扫描电镜、X射线衍射、X射线光电子能谱等测试方法对材料的形貌和物相进行了表征和分析。结果表明,TiN-rGO复合材料很好地保持了TiN菊花状的三维结构和rGO透明褶皱的形貌,且层状的rGO均匀地包覆在了菊花状的TiN的周围。用TiN-rGO复合材料修饰玻碳电极(GCE)制得了TiN-rGO/GCE电化学传感器,用于测定人体中的生物小分子DA和UA。由于复合材料中TiN和rGO的协同效应,构建的电化学传感器表现出了优秀的电化学性能。检测结果表明:TiN-rGO/GCE传感器对DA和UA的检测限分别为0.11和0.12 μmol·L?1,线性范围分别为0.5~210 μmol·L?1和5~350 μmol·L?1,且具有良好的抗干扰性、重现性和稳定性,且成功应用于人体内真实样品的DA和UA检测
文档格式:PDF 文档大小:668.72KB 文档页数:9
为了解决多芯电缆的非侵入式电流测量由于被测对象信号微弱、系统灵敏度高、易受环境因素干扰,造成测量误差较大的问题,采用磁阻传感器的非侵入式电流测量系统为研究对象,在分析系统测量方法及硬铁、软铁和比例因子等误差构成的基础上,提出一种基于二步法的误差校正方法,该方法通过对传感器输出信号进行非线性变换,构造了与误差相对应的矩阵方程,并在对方程求解后进行非线性回归计算,从而实现对多芯电缆的电流测量值的动态误差修正.实验结果表明,该方法可以同时校正非侵入式电流测量系统的线性误差与部分非线性误差
文档格式:PDF 文档大小:5.93MB 文档页数:57
电子科技大学:《智能嵌入式系统设计》课程教学资源(课件讲稿)体感传感器与姿态识别(体感传感器与3D视觉交互)
文档格式:PDF 文档大小:440.04KB 文档页数:4
采用改进的悬浮聚合法制备磁性聚苯乙烯微球.利用扫描电子显微镜和振动样品磁强计对所合成磁性微球的尺寸和磁性能进行分析表征.采用巨磁阻生物传感器检测磁性微球的数量.结果表明:磁性微球粒径大小为0.5~50μm,比饱和磁化强度为4.56 A·m2·kg-1.巨磁阻生物传感器对磁性聚苯乙烯微球数量具有很好的可检测性.在一定的范围内,随着磁性微球数量的增多,传感器的输出信号增强.在磁性微球一定数量的情况下,随着磁性微球粒径的增大,传感器的电阻变化量先增大后减小
首页上页3334353637383940下页末页
热门关键字
搜索一下,找到相关课件或文库资源 439 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有