点击切换搜索课件文库搜索结果(399)
文档格式:DOC 文档大小:316KB 文档页数:8
第七章定积分 7-1-2定积分在几何方面的应用---求平面图形的面积: 1)平面图形的面积是什么? 看作知面积的图形对该图形“度量”的结果。可称之为“测度” 设欲度量的图形为G,通常做法是用两种多边形P和Q,其面积分 别为Sp,S,使得: PcGcQ:取 S=Sup(Sp)最小上界s=nf(S)最大下界。 P Q 如果有S=S=S,显然可认为图形G的面积是S. 2)各种坐标系下的计算公式? 在直角坐标系下:
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
文档格式:PPT 文档大小:872.5KB 文档页数:31
第十三讲泰勒公式 一、函数逼近、泰勒多项式 二、带皮亚诺余项的泰勒公式 三、带拉格朗日余项的泰勒公式 四、五个常用函数的泰勒公式 五、泰勒公式的应用
文档格式:PPT 文档大小:1.03MB 文档页数:37
定积分的换元法 上一节我们建立了积分学两类基本问题 之间的联系—微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:801.5KB 文档页数:44
定积分的概念 前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题定积分,它是微分(求局部量 )的逆运算(微分的无限求和求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法 难点定义及换元法和分部法的运用
文档格式:DOC 文档大小:203KB 文档页数:4
第二章多元函数 2-3习题讨论 23-1讨论题 23-2参考解答 习题讨论 题目 )设xn,yn∈R\,且 limx=x, lim y=y,证明 lim(,,,)=(,y) (2)函数f(x,y)=(,列在R\×R\中连续 (二)在长方体T内任取一点M0,是否一定存在一张过点M的平 面∏I,将该长方体恰分成两等份 (三)设集合A,BCR”,证明
文档格式:DOC 文档大小:566.5KB 文档页数:12
第三节复合函数微分法 2-3复合函数微分法 23-1复合函数导数公式 23-2方向导数与梯度 第四讲复合函数微分法 课后作业 阅读:第二章第三节:pp.40-49 预习:第二章第四节:pp.50-58 作业:第二章习题3:pp.49-50:1,(2),(3,⑤5);2;4;6;7;9 2-3复合函数微分法 23-1复合函数导数公式 ()任何具体的初等多元函数的偏导数均可由一元函数求导公式解决,例 对函数z=sin-cos,求与一是简单的
文档格式:PPT 文档大小:482.5KB 文档页数:36
第三节积分的计算 一、问题的直观背景 二、不定积分表与计算 三、微积分基本定理 四、小结 五、练习
文档格式:RTF 文档大小:39.17KB 文档页数:3
复习 复变函数 复数的运算计算幅角要注意z在复平面所在的象限例复变函数的一个重要方面,就是说明实变函数的微积分的许多结论,复变函数也照样用. 例如,在实变函数中函数的导数有在实变函数中,一些函数可以按泰勒级数展开,例如在复变函数中结果也一样: 复变函数还可以展开为洛朗级数,如实变函数中的定积分经常用牛莱公式计算的
文档格式:PPT 文档大小:1.4MB 文档页数:62
第一节 定积分的概念 一、定积分的实际背景 二、定积分的概念 三、定积分的几何意义 四、定积分的性质 第二节 微积分基本公式 一、变上限的定积分 二、牛顿-莱布尼茨(Newton-Leibniz)公式 第三节 定积分的积分方法 一、定积分的换元积分法 二、定积分的分部积分法 第四节 广义积分 一、无穷区间上的广义积分 二、无界函数的广义积分
首页上页3334353637383940下页末页
热门关键字
搜索一下,找到相关课件或文库资源 399 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有