点击切换搜索课件文库搜索结果(659)
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:DOC 文档大小:214.5KB 文档页数:2
命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:DOC 文档大小:2.84MB 文档页数:10
1.设有一平面薄板(不计其厚度),占有xOy面上的闭区域D,薄 板上分布有密度为=u(x,y)的电荷,且x,y)在D上连续,试用二重 积分表达该板上全部电荷Q
文档格式:PPT 文档大小:389.5KB 文档页数:15
闭区间上连续函数的性质 闭区间上的连续函数有着十分优良的性质 ,这些性质在函数的理论分析、研究中有着 重大的价值,起着十分重要的作用。下面我 们就不加证明地给出这些结论,好在这些结 论在几何意义是比较明显的
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:1.6MB 文档页数:31
一、向量在轴上的投影与投影定理 二、向量在坐标轴上的分向量与向量的坐标 三、向量的模与方向余弦的坐标表示式 四、小结思考题
文档格式:PPT 文档大小:342KB 文档页数:15
闭区间上的连续函数有着十分优良的性质, 这些性质在函数的理论分析、研究中有着重 大的价值,起着十分重要的作用。下面我们 就不加证明地给出这些结论,好在这些结论 在几何意义是比较明显的
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:421KB 文档页数:26
第三章函数的极限与连续性 第九节闭区间上连续函数的性质 一 最大值和最小值定理 二 介值定理 三 函数的一致连续性
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 659 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有