点击切换搜索课件文库搜索结果(40)
文档格式:PDF 文档大小:421.83KB 文档页数:10
在调研国内外众多金属矿山和收集大量相关文献的基础上, 综述了国内外金属矿山开采现状及研究进展, 聚焦深部开采主要工程技术难题, 从开采动力灾害预测防控、深井高温热害控制治理、深井提升、深井开采方法工艺变革、深部选矿新技术、智能无人采矿这六个方面, 提出了解决我国深部开采难题的战略建议, 结果表明: (1)5000m开采深度将会是我国金属矿深部开采中长期战略研究目标; (2) 无绳垂直提升技术具有提升效率高, 使用限制少的特点, 建议我国重点针对此类技术装备研发; (3)将深部矿产资源开采与深部能源开发相结合, 可以有效降低深部降温成本, 是解决深部采矿经济性的新途径; (4) 新一代采矿技术需对原有的采矿模式和开采工艺进行变革, 机械连续切割破岩技术是未来超深矿井建设的重要发展方向; (5) 充填法是保证深部开采安全最有效的方法之一,应对充填材料、充填工艺进行更深入的研究; (6) 我国尚不具备全面推广遥控智能化无人采矿的条件, 可以通过产学研联合攻关等方式逐步提高矿山生产自动化和遥控智能作业水平
文档格式:PDF 文档大小:4.74MB 文档页数:14
为实现汽车轻量化,同时保证其具有较好的碰撞安全性,高强度-质量比金属板材在汽车制造领域得到了广泛的应用.然而,在传统冲压成形过程中,上述板材(如先进高强钢、铝合金和镁合金等)会出现无明显缩颈的韧性断裂行为.特别是发生在纯剪切加载路径附近的剪切型韧性断裂行为超出了传统缩颈型成形极限图的预测范围.此外,在近些年来快速发展的单点渐进成形中,缩颈失稳被抑制,取而代之的则是无明显缩颈的韧性断裂.以上问题对基于缩颈失稳的传统成形极限分析方法提出了新的挑战,同时也限制了高强度-质量比金属板材的应用及其新型成形工艺的研发.为此,世界各国学者开始普遍关注金属材料韧性断裂预测模型的开发及其应用研究.本文首先从孔洞的演化行为方面出发,对金属韧性断裂的微观机理研究进行了介绍.随后重点评述了韧性断裂预测模型的研究进展和应用现状.最后,对韧性断裂研究的发展趋势进行了展望.本文可以为金属韧性断裂模型的选择、应用及其开发提供有益参考
文档格式:PDF 文档大小:22.52MB 文档页数:53
本章介绍了烧成与煅烧的基本概念;讲述了陶瓷坯、釉在烧成过程中的物理化学变化、瓷胎的显微结构、陶瓷的烧成方式的选择、陶瓷产品烧成缺陷分析;讲解了耐火材料砖坯在烧成过程中的物理化学变化、影响砖坯烧成的工艺因素、不同耐火材料制品的烧成;介绍了烧成制度的确定与烧成设备;介绍了热压烧结、真空烧结、反应烧结、高温自蔓延烧结、微波烧结等烧成新工艺和新技术;讲述了水泥熟料的形成过程,即矿化剂及微量元素对水泥熟料煅烧的影响、水泥熟料煅烧设备、回转窑内的物料煅烧、悬浮预热和窑外分解、熟料冷却机、水泥熟料的立窑煅烧等内容
文档格式:PDF 文档大小:1.35MB 文档页数:8
以相变材料为核心的潜热储存技术,对加快新能源开发和提高能源利用率起着关键性作用。以油酸钙为前驱体,通过水热法合成了具有自支撑网络结构的羟基磷灰石(HAP)气凝胶,并采用浸渍法制备出自支撑羟基磷灰石复合相变材料。通过扫描电镜、傅里叶红外光谱、X射线衍射、热重法、差示扫描量热法等手段对所制备复合相变材料的形貌、稳定性、热性能等进行了表征及测试。实验结果表明,负载石蜡或十八醇的羟基磷灰石气凝胶复合相变材料均具有良好的热性能,质量分数60%石蜡@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值分别为85.10和85.30 J·g?1,结晶度为81.50%;质量分数60%十八醇@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值为113.78和112.25 J·g?1,结晶度为86.20%,且具有很好的热稳定性和化学稳定性。此外,羟基磷灰石气凝胶载体材料阻燃性好,无腐蚀且安全环保,有效拓展了相变材料在智能保温纺织物和建筑材料等领域的实际应用
文档格式:PDF 文档大小:37.33MB 文档页数:584
本书作者,英国皇家学会会员、中国科学院外籍院士Robert W.Cahn教授为我国材料研究团体和大学教育工作者所熟知。本书近乎完美地实现了作者所设定的双重目标:一是从渐变演化的视角界定材料科学的学科内涵;二是对这一学科主题的现状作概括性评述。该书范围涉及所有主要材料类别和几代材料科学家所关注的主要问题,论述全面、系统。作者成功地避开了这类书籍通常难免的最大缺点:叙述的重心无可奈何地偏倾于作者最熟悉的主题。这得益于作者百科全书般的广博知识和他的公平态度:不折不扣地给予与各种主题材料地位相称的篇幅。 该书作者的写作风格简洁明快,清新活泼,令很多人倾慕。这种迷人的写作风格对提高该书的可读性起到很大作用,使该书不仅适合于材料科学工作者,也使其他读者产生阅读兴趣,这对材料科学和材料研究的进一步突破、创新与发展,乃至人才的培养极为重要。作者还在材料科学学科深化的宏大构架上天衣无缝地编织了很多杰出材料的史传及贡献,使得本书内容充实生动,读者在阅读过程中不仅会获得知识,同时享受极大的乐趣,并得到启迪。 这本涵盖极广的材料科学史书共征引了发表于200多年间的700多篇重要科学文献。这本书应该成为材料科学工作者的必读物,也值得甚至应该被关心和欲掌握人类知识增长的人研读。不仅因为它涉及宽广的领域,而且因为它以史为据,洞见材料科学发展的规律,无论新老材科研究者均能从阅读中获益,从而得到急需的启发和创新的能力
文档格式:PDF 文档大小:673.65KB 文档页数:5
采用传统陶瓷制备方法,制备了一种新型无铅压电陶瓷材料(1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5Ti03-yBiCrO3(简写为BNT-BKT-BC-x/y).研究了该体系陶瓷微观结构、压电性能和退极化温度的变化规律.结果表明:除x=0.18、y=0.025的组成析出第2相外,其他组成陶瓷均能够形成纯钙钛矿固溶体,陶瓷三方、四方共存的准同型相界(MPB)成分范围为.x=0.18~0.21,y=0~0.02.在准同型相界成分附近该体系陶瓷压电性能达到最大值:d33=168pC·N-1,kp=0.326.采用平面机电耦合系数kp和极化相位角θmax与温度的关系确定的退极化温度基本相同,陶瓷的退极化温度随BC含量的增加一直降低。随BKT含量的增加先降低后升高
文档格式:PDF 文档大小:1.74MB 文档页数:11
高熵合金与非晶合金作为新一代金属材料,具备许多优异的物理、化学及力学性能,在柔性电子领域展现出巨大的应用潜力。传统的块体高熵合金与非晶合金虽然性能优异,但由于材料本身的刚性特点无法满足可变形电子设备的柔性需求,因此需要通过一定方式如降低维度、设计微结构等赋予其柔性特征。在简述高熵合金柔性纤维的力学性能特点的基础上,介绍了高熵合金薄膜作为潜在柔性材料的制备方式与结构性能特点,总结了非晶合金薄膜应用于电子皮肤、柔性电极、微结构制作等柔性电子领域中的最新进展,最后讨论了现有工作的不足之处并对未来柔性电子的发展前景进行了展望
文档格式:PDF 文档大小:1.72MB 文档页数:11
以磁性Fe3O4微球为模板,通过St?ber法和水热法合成了一种杨梅状的新型Fe3O4@SnO2复合材料,主要应用于电磁波吸收领域。借助X射线衍射、X光电子能谱、扫描电子显微镜、透射电子显微镜、振动样品磁强计和矢量网络分析仪对其物相结构、表面元素、微观形貌、磁性及吸波特性进行了分析表征。分析结果表明,杨梅状的Fe3O4@SnO2的球径约为500 nm,无明显团聚,具有良好的形貌均匀性。其SnO2层由纳米SnO2颗粒松散堆叠而成,具有大量的空隙结构,层厚约为40 nm。杨梅状的Fe3O4@SnO2具有较强的介电损耗能力,且有利于提升阻抗匹配性能,呈现出良好的电磁波吸收能力,当厚度为1.4~2.8 mm时,其最小反射损耗RL(min)均低于?20 dB。其最优厚度为1.7 mm,此时RL(min)为?29 dB,有效带宽为4.9 GHz(13.1~18 GHz),是一种具有发展潜力的吸波材料
文档格式:PPT 文档大小:1.76MB 文档页数:102
第一节 聚丙烯纤维的原料 第二节 聚丙烯纤维的成形 第三节 聚丙烯纤维的性能和用途 第四节 聚丙烯纤维的改性与新品种 本章共讲了4节内容,我们重点注意以下问题: 第1节 讲述了聚丙烯纤维原料的制备、结构、性质以及对成纤聚合物的质量要求,要了解清楚。 第2节 是纤维成型与加工方法,特别是讲了裂膜纤维、短程纺技术、无纺布加工技术,要很好掌握。 第3节 是产品性能与用途,可适当了解。 第4节 是产品改性与新品种简介,对丙纶来说也是比较重要的内容,要适当掌握
文档格式:PDF 文档大小:1.19MB 文档页数:24
社会本质上是一个开放演化、具有耦合作用和适应性的复杂网络系统,社会治理是一项庞大而复杂的系统工程。由于环境和社会事物的复杂性和不确定性,传统由政府主导的线性管理模式不能对复杂社会问题给出有效的解释和应对方案,有必要引入新的管理范式,即复杂科学管理范式。复杂系统理论与社会治理具有内在的契合性,能够揭示社会治理复杂性产生的内在机理及其规律。复杂系统理论表明,越是复杂的系统,系统协调的要求越高,协同效应也就越显著。复杂社会网络系统所具有的小世界、无标度、社团结构、偏好连接及虚实“二相”性拓扑结构范型,对社会治理有着直接而深刻的影响。加强和创新社会治理,需要分析社会系统的复杂网络结构及其特征,建立社会治理的协同创新机制和制度安排,展开协同社会治理。复杂系统理论为研究社会治理提供了一种新的研究范式,具有重要的借鉴意义
上页1234
热门关键字
搜索一下,找到相关课件或文库资源 40 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有