点击切换搜索课件文库搜索结果(409)
文档格式:DOC 文档大小:200.5KB 文档页数:4
设V是数域P上一个n维线性空间.V上全体线性函数组成的集合记作 L(V,P).可以用自然的方法在L(V,P)上定义加法和数量乘法 设f,g是V的两个线性函数定义函数f+g如下:
文档格式:PPT 文档大小:1.23MB 文档页数:34
德国数学家和物理学家。 长期从事于数学并将数学应用于物理 学、天文学和大地测量学等领域的研 究著述丰富,成就甚多。他一生中共 发表323篇(种)著作,提出404项 科学创见。 在CGS电磁系单位制中磁感应强度的 单位定为高斯,便是为了纪念高斯在 电磁学上的卓越贡献
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E,则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数运算
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E, 则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数 运算
文档格式:PDF 文档大小:82.69KB 文档页数:1
本课程是为数学系本科高年级学生开设的.本课程讲述一般空间上的测度论的基础知 识和欧氏空间R”上的 Lebesgue测度与积分理论. 现代数学的许多分支如概率论,泛函分析,群上调和分析等越来越多的用到一般空间 上的测度理论.对数学专业的学生而言,掌握一般空间上的测度论的基础知识,已经变得越 来越重要.因此本课程将一般空间上的测度论和R上的Lebesgue积分结合起来讲述,交叉 进行.一般是每章先介绍一般空间上的概念与定理,然后将R”上的Lebesgue测度与积分作 为特例,加以重点介绍
文档格式:DOC 文档大小:162KB 文档页数:2
第四章4-2子空间与商空间 4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于 ∑中任一向量,表达式 a=a1+a2+…+am,a1e,i=12,m 是唯一的,则称∑V为直和,记为 1 v⊕或V 定理设V12,…,Vn为数域K上的线性空间V上的有限为子空间,则下述四条等
文档格式:PPT 文档大小:560.5KB 文档页数:23
广义积分 在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:DOC 文档大小:647KB 文档页数:12
第十章多元函数微分学 第一节多元函数的极限及连续性 思考题: 1.将二元函数与一元函数的极限、连续概念相比较,说明二者之间的区别 答:二元函数与一元函数的极限都是表示某动点P以任意方式无限靠近定点时,与 之相关的一变量无限接近于一个确定的常数,不同的是后者对应P,Q点是数轴上的点, 前者对应的P,Q是平面上的点
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 409 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有