点击切换搜索课件文库搜索结果(419)
文档格式:PDF 文档大小:6.38MB 文档页数:8
层状锰基材料Li[Lix(MnM)1-x]O2(M=Ni,Co,Cr,…)以高比容量成为最具应用前景的正极体系之一,近年来成为研究热点而倍受关注,尤其借助原位测试分析等先进表征手段,对Li[Lix(MnM)1-x]O2的结构及其高容量获取机理的研究取得显著进展.本文概括介绍了高能量密度层状正极材料的结构与充放电机理,重点针对其目前依然存在的问题,详细归纳了Li[Lix(MnM)1-x]O2正极材料充放电循环过程中电压衰减机理、界面/表面特征以及性能改善的研究新进展,而且对高能量密度层状正极材料的未来研究方向也进行了探讨
文档格式:PDF 文档大小:1.09MB 文档页数:9
利用Gleeble-3500热模拟试验机对38MnB5热成形钢的高温变形行为进行研究, 分别在650~950℃温度区间内, 以0.01、0.1、1和10 s-1的应变速率对其进行等温单向拉伸测试, 并得到相应条件下的真应力-应变曲线.结果表明: 38MnB5热成形钢流变应力随着变形温度的升高而减小, 随着应变速率的增大而增大.当应变速率逐渐增加时, 热变形时发生的动态回复和动态再结晶效果并不显著, 而当温度逐渐升高时, 二者作用逐渐加强.考虑了温度、应变速率和应变的综合复杂影响, 建立38MnB5热成形钢高温下的本构方程.此本构方程通过对流变应力、应变、应变速率等实验数据的回归分析, 得到与变形温度、应变速率和应变相关的材料参数多项式.计算结果与实验结果对比发现, 通过本构方程所获得的计算值与试验值吻合良好
文档格式:PDF 文档大小:7.6MB 文档页数:8
以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能
文档格式:PDF 文档大小:2.17MB 文档页数:8
采用共沉淀法制备了Ni(OH)2前驱体材料,通过高温固相法制备了LiNiO2和B掺杂LiNiO2(B的摩尔分数为1%),利用X射线衍射(XRD)、里特维尔德(Rietveld)精修、扫描电子显微镜(SEM)、恒流充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)对材料的晶体结构、表面形貌和电化学性能进行了系统性表征.XRD和Rietveld精修结果表明,LiNiO2和B掺杂LiNiO2均具有良好的层状结构,B因为占据在过渡金属层和锂层的四面体间隙位而导致掺杂后略微增大材料的晶格参数和晶胞体积,同时增大了LiO6八面体的间距,进而促进锂离子运输.由于掺杂的B的摩尔分数仅为1%,LiNiO2和B掺杂LiNiO2均表现为直径10 μm左右的多晶二次颗粒,且一次颗粒晶粒尺寸没有明显区别.长循环数据表明B掺杂可以有效提高材料的循环容量保持率,经100次循环后,B掺杂样品在40 mA·g−1电流下的容量保持率为77.5%,优于未掺杂样品(相同条件下容量保持率为66.6%).微分容量曲线和EIS分析表明B掺杂可以有效抑制循环过程中的阻抗增长
文档格式:PDF 文档大小:1.42MB 文档页数:7
以茄子为原材料,通过水热处理–后续热解法及直接热解法分别制备出两种不同的茄子衍生多孔碳材料(HBPC和BPC)。以茄子衍生多孔碳材料为载体,采用真空浸渍法负载相变芯材聚乙二醇(PEG2000),制备出聚乙二醇/茄子衍生多孔碳材料复合相变材料。通过扫描电镜、拉曼光谱、压汞法、傅里叶变换红外光谱分析、X射线衍射仪、热重分析仪和差示扫描量热仪对其进行结构表征及性能测试。结果表明,通过直接热解法制得的茄子衍生多孔碳材料为载体的聚乙二醇/茄子衍生多孔碳材料复合相变材料具有更好的相变储热效果,负载聚乙二醇的质量分数高达90.60%,熔融潜热为133.98 J·g?1,达到了较好的定形相变效果及良好的循环稳定性
文档格式:PDF 文档大小:726.84KB 文档页数:7
以钢渣与生物质废弃材料为研究对象,利用钢渣中含有的金属氧化物对生物质废弃材料进行改性处理获得生态活性炭,研究钢渣种类、钢渣粉磨时间和钢渣超微粉用量对生态活性炭降解甲醛性能的影响。利用X-射线荧光光谱仪(XRF)、X-射线衍射仪(XRD)、激光粒度仪(LPSA)、傅立叶变换红外光谱仪(FTIR)、比表面积及孔径测定仪(BET)和扫描电子显微镜(SEM)测试钢渣超微粉的化学成分、钢渣超微粉的矿物组成、钢渣超微粉的粒径分布、钢渣超微粉的结构组成、生态活性炭的孔结构和生态活性炭的微观形貌。结果表明:钢渣为电炉渣,钢渣粉磨时间为90 min,钢渣超微粉用量为20 g制备的生态活性炭具有良好的降解甲醛性能与合理的经济性,即10 h后甲醛降解率为57.5%。电炉渣中Fe元素与Mn元素含量高,其中Fe元素促使大量甲醛在活性炭的多孔结构中形成富集,Mn元素对富集的甲醛进行催化降解,实现吸附降解与催化降解的协同作用。适当延长钢渣粉磨时间可以减小钢渣超微粉的粒径大小与改善钢渣超微粉的粒度分布均匀程度,有利于提高钢渣超微粉与活性炭、甲醛的降解作用面积。适量的钢渣超微粉可以提高生态活性炭的粉化率,抵消由于孔容积与比表面积降低导致的活性炭吸附降解作用下降的问题
文档格式:PDF 文档大小:2.51MB 文档页数:9
通过密炼?注塑成型工艺制备了不同苎麻纤维含量的聚乳酸基复合材料,研究了纤维含量对复合材料性能的影响规律,并揭示了纤维增强机理。研究表明,苎麻纤维的添加提高了复合材料的耐热性能,尤其是当纤维质量分数为40%时,复合材料的热变形温度提高了10.5%。此外,苎麻纤维均匀地分散在基体中,由于纤维与聚乳酸的界面强度较弱,断面上有大量的纤维拔出和纤维孔洞;差示扫描量热仪测试表明高含量的纤维限制了聚乳酸分子链的运动,促进复合材料形成更加致密完善的晶核;同时,流变行为也表明苎麻纤维含量的增加有助于提高复合材料的黏弹响应和复合黏度;最后,苎麻纤维的加入提高了复合材料的拉伸和弯曲强度,且随纤维含量的增加而增大。与聚乳酸相比,当纤维质量分数为40%时复合材料的拉伸和弯曲强度分别提高了30%和21.9%
文档格式:PDF 文档大小:1.35MB 文档页数:8
以相变材料为核心的潜热储存技术,对加快新能源开发和提高能源利用率起着关键性作用。以油酸钙为前驱体,通过水热法合成了具有自支撑网络结构的羟基磷灰石(HAP)气凝胶,并采用浸渍法制备出自支撑羟基磷灰石复合相变材料。通过扫描电镜、傅里叶红外光谱、X射线衍射、热重法、差示扫描量热法等手段对所制备复合相变材料的形貌、稳定性、热性能等进行了表征及测试。实验结果表明,负载石蜡或十八醇的羟基磷灰石气凝胶复合相变材料均具有良好的热性能,质量分数60%石蜡@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值分别为85.10和85.30 J·g?1,结晶度为81.50%;质量分数60%十八醇@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值为113.78和112.25 J·g?1,结晶度为86.20%,且具有很好的热稳定性和化学稳定性。此外,羟基磷灰石气凝胶载体材料阻燃性好,无腐蚀且安全环保,有效拓展了相变材料在智能保温纺织物和建筑材料等领域的实际应用
文档格式:PDF 文档大小:1.71MB 文档页数:11
为明确石粉掺合料对地聚物材料的作用机理,以赤泥基注浆材料为研究对象,系统研究了石粉掺量和粒径分布对赤泥基注浆材料浆体性能、力学性能和微观结构的作用规律,并结合X射线衍射仪(XRD)、压汞仪(MIP)和扫描电镜(SEM)等微观测试手段分析其作用机理。研究表明,结石体力学强度随石粉掺量的上升先增大后减小,当石粉的质量分数为5%时抗压强度最高,3 d时可达5.65 MPa,抗压强度提升幅度为18.94%,同时浆液泌水率上升幅度仅为9.85%,且28 d结石体孔隙率降低了18.35%,因此,5%为石粉在赤泥基注浆材料中的最佳质量分数。在石粉最佳质量分数条件下,随着石粉平均粒径减小,浆液凝结时间及泌水率均呈现下降的趋势;当石粉平均粒径达到8 μm时,石粉“填充效应”和“成核效应”作用尤为明显,浆液黏度突升,且3 d和28 d试样强度分别提升了11.86%和10%,故石粉平均粒径越小,其对赤泥基注浆材料的提升作用越显著,赤泥基注浆材料的最佳粉料质量配比为赤泥47.5%,矿粉47.5%,石粉5%;微观分析证实,石粉在浆液水化历程中以物理特性参与其中,为Na2O–SiO2–Al2O3–H2O凝胶(N–A–S–H), 水化硅铝酸钙凝胶(C–A–S–H)和水化硅酸钙凝胶(C–S–H)等凝胶提供成核位点,供地聚物凝胶沉淀和生长,加速浆液水化
文档格式:PDF 文档大小:1.08MB 文档页数:9
为探明全尾砂高浓度充填料浆的灰砂比、浓度和流速对管道阻力的影响规律,预测工业充填管道阻力,开展中试规模环管试验。根据管壁切应力与剪切速率关系建立管道阻力预测模型,利用灰关联法分析各因素对管道阻力的影响强弱,通过线性回归获取料浆流变参数。结果表明,管道阻力对料浆浓度的变化最为敏感,随浓度增加成二次函数增长。料浆流速对管道阻力的影响仅次于浓度,层流输送时管道阻力随流速增加成线性增长。灰砂比对管道阻力的影响有双重性,灰砂质量比小于1∶8时胶凝材料的黏结作用占主导并增加管道阻力,反之胶凝材料的润滑作用占主导并降低管道阻力。环管试验得到的料浆流变参数明显小于流变仪测试结果且更接近工程实际,管道阻力预测模型的误差小于10%
首页上页3536373839404142下页末页
热门关键字
搜索一下,找到相关课件或文库资源 419 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有