点击切换搜索课件文库搜索结果(772)
文档格式:PDF 文档大小:225.83KB 文档页数:16
理解流体的主要物理性质:密度、压缩性和膨胀性、粘性、表面张力和毛细现象。 流体的力学性质在日常生活中能感受到,但通过学习应上升到理性。 对物理现象用数学模型来定量描述,以便严格定义,准确计算。概念只有用数学工具准 确计量才能上升为科学
文档格式:PPT 文档大小:457KB 文档页数:15
本节讨论有理数域上多项式的可约性,以及如 何求Q上多项式的有理根,由于f(x)与qf(x)在 Q[x]上的可约性相同。因此讨论f(x)在Q上的可约 性可转化为求整系数多项式在Q上的可约性
文档格式:PPT 文档大小:560.5KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:563KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分——无穷限积分,无界函 数在有限区间上的积分——无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:560.5KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:587KB 文档页数:57
忌数的概念 在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即导数。 本章将通过对实际问题的分析,引出微分学中两个最重要的基本概念导数与微分,然后再建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:97.5KB 文档页数:3
定义设A是数域K上一个n阶方阵,g(x)是K上一个m次多项式.如果g(A)=0,则g(x) 称为方阵A的一个化零多项式 Hamilton-Cayley-定理设A是数域K上的n阶方阵,f是A的特征多项式,则f(A)=0. 证明A在C内相 Jordan似于形矩阵J,即有c上可逆阵T使TAT=J显然对任意正 整数k
文档格式:DOC 文档大小:43.5KB 文档页数:1
即矩阵乘积的行列式等于它的因子的行列式的乘积 用数学归纳法,定理1可以推广到多个因子的情形,即有 推论1设A1,A2,…A是数域P上的mXn矩阵,于是 1A1A2…AHA1‖A2|…|A 定义6数域P上的n×n矩阵A称为非退化的,如果|A|≠0,否则称为退化
文档格式:PPT 文档大小:615KB 文档页数:23
一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M*是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
首页上页4243444546474849下页末页
热门关键字
搜索一下,找到相关课件或文库资源 772 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有