点击切换搜索课件文库搜索结果(5014)
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
文档格式:DOC 文档大小:89.5KB 文档页数:4
我们用初等因子的理论来解决若尔当标准形的计算问题.首先计算若尔当标 准形的初等因子
文档格式:DOC 文档大小:197.5KB 文档页数:2
4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组
文档格式:PPT 文档大小:680.5KB 文档页数:29
一、数项级数的审敛法 二、求幂级数收敛域的方法 三、幂级数和函数的求法 四、函数的幂级数和付式级数展开法
文档格式:DOC 文档大小:108KB 文档页数:3
现在来证明,-矩阵的标准形是唯一的 定义5设λ-矩阵A(4)的秩为r,对于正整数k,1≤k≤r,A(4)中必有非 零的k级子式.A(4)中全部k级子式的首项系数为1的最大公因式D(4)称为 A(A)的k级行列式因子 由定义可知,对于秩为r的λ-矩阵,行列式因子一共有r个行列式因子的 意义就在于,它在初等变换下是不变的
文档格式:DOC 文档大小:146.5KB 文档页数:3
对于给定的n维线性空间V,A∈L(V),如何才能选到V的一个基使关于 这个基的矩阵具有尽可能简单的形式由于一个线性变换关于不同基的矩阵是相 似的因而问题也可以这样提出在一切彼此相似的n阶矩阵中如何选出一个形 式尽可能简单的矩阵这一节介绍不变子空间的概念,来说明线性变换的矩阵的 化简与线性变换的内在联系
文档格式:PPT 文档大小:800.5KB 文档页数:32
一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛
文档格式:DOC 文档大小:54.5KB 文档页数:3
由前面的讨论可知,并不是对于每一个线性变换都有一组基,使它在这组基 下的矩阵成为对角形.下面先介绍一下,在适当选择的基下,一般的一个线性变 换能化简成什么形状
文档格式:DOC 文档大小:77.5KB 文档页数:1
4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属于特征值λ的特征向量。命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。证明设51,52是属于的特征向量,Vk,∈K
文档格式:DOC 文档大小:61KB 文档页数:1
定义 9 设 1 2 V ,V 是线性空间 V 的子空间,如果和 V1+V2 中每个向量  的分 解式
首页上页489490491492493494495496下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5014 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有