点击切换搜索课件文库搜索结果(274)
文档格式:PDF 文档大小:4.08MB 文档页数:7
在薄壁结构的应用中,屈曲稳定性是影响其承载性能的关键因素,为研究减薄铺层厚度对复合材料薄壁结构局部屈曲行为的影响,本文采用不同厚度(0.125、0.055和0.020 mm)的预浸料制备复合材料薄壁管,实验测试了其在轴压下的局部屈曲行为.实验结果表明,随着铺层厚度减薄,实验采用的正交和均衡两种铺层方式的复合材料薄壁管局部屈曲载荷均随之提高,而屈曲失效模式没有发生改变.力学分析表明,铺层厚度减薄后,管壁弯曲刚度的改变和层间剪切应力分布对薄壁管局部屈曲载荷提高有重要影响.采用薄铺层制备复合材料薄壁结构件能够有效提高其局部屈曲能力
文档格式:PDF 文档大小:2.96MB 文档页数:146
第一节 高分子纳米复合材料概述 第二节 高分子纳米复合材料的制备技术 第三节 高分子纳米复合材料的结构 第四节 高分子纳米复合材料的分析与表征 第五节 高分子纳米复合材料的性能与应用
文档格式:PDF 文档大小:2.59MB 文档页数:67
1.1 复合材料的定义和分类 1.1.1 复合材料的定义 1.1.2 复合材料的结构 1.1.3 复合材料的分类 1.1.3.1 按增强体分类 1.1.3.2 按基体分类 1.1.3.3 按应用分类 1.1.3.4 更高级复合材料
文档格式:PDF 文档大小:425.75KB 文档页数:4
作者将沥青基碳纤维作为增强纤维以不同比例(0~25%)加入到聚乙烯树脂中制成复合材料,并研究了这些复合材料的力学性能、电学性能及耐热性的变化规律。结果表明:碳纤维有显著的增强作用。随碳纤维比例的增大,该复合材料的拉伸强度、弯曲强度、弯曲模量及热变形温度均呈上升态势;而缺口冲击强度及击穿电压呈下降态势。碳纤维增强的结果将使该复合材料比聚乙烯有更宽的使用范围
文档格式:PPT 文档大小:218.5KB 文档页数:64
1、复合材料的定义 什么是复合材料(Composition Materials, Composite)? 要给复合材料下一个严格精确而又统一的定义是很困难的。概括前人的观点,有关复合材料的定义或偏重于考虑复合后材料的性能,或偏重于考虑复合材料的结构
文档格式:PDF 文档大小:482.5KB 文档页数:5
采用放电等离子烧结(SPS)方法制备出高体积分数的铜/金刚石复合材料,并对复合材料的致密度、热导率和热膨胀系数等进行了研究.结果表明,采用该方法制备的铜/金刚石复合材料微观组织均匀,致密度分布为94%~99%,最高热导率为305W·(m·K)-1,热膨胀系数与常见电子半导体材料相匹配,能够满足电子封装材料的要求
文档格式:DOC 文档大小:27KB 文档页数:2
1、由两种或两种以上物理、化学、力学性能不同的物质,经人工组合而成的多相 固体材料叫做复合材料。 2、复合材料可分为结构复合材料和功能复合材料两大类
文档格式:PDF 文档大小:7.6MB 文档页数:8
以沥青为软碳原料,商业石墨的载体材料,通过高温热解法成功合成了硅/石墨/碳复合材料,同时原位生成了微米尺度的碳纤维.该硅/石墨/碳复合材料具有诸多优点,石墨片层堆叠之间的空隙为硅的体积膨胀提供了有效的空间,沥青热解碳材料的包覆能一定程度抑制硅基材料的体积效应和提高其电子电导率,同时微米级的碳纤维能提高材料的长程导电性和结构稳定性,从而极大的改善负极材料循环性能.通过电化学测试表明,硅/石墨/碳复合材料中硅/石墨/碳复合负极材料在200 mA·g-1电流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1电流密度下经过500圈循环后容量保持率为92.8%,每圈的容量衰减率仅为0.014%,展现了优异的循环性能
文档格式:PDF 文档大小:781.46KB 文档页数:5
研究了O'-Siaion/BN和O'-Sialon/ZrO2复合材料抗熔融金属和保护法侵蚀.结果表明:O'-Sialon/BN复合材料抗钢水侵蚀的动力学分为两段控制:前期为界面化学反应控制,后期为扩散控制.O'-Sialon/ZrO2复合材料具有良好的抗保护渣侵蚀性能这是由于ZrO2在硅酸盐熔体中的溶解度较低,随着ZrO2的增加,抑制了O'-Sialon与CO,以及渣中其他组元的反应,从而提高了O'-Sialon抗渣的侵蚀性
文档格式:PDF 文档大小:1.2MB 文档页数:7
采用水热法和还原氮化法合成了菊花状形貌的氮化钛(TiN)纳米材料,并将其与还原氧化石墨烯(rGO)水热复合制备了氮化钛–还原氧化石墨烯(TiN-rGO)复合材料。利用扫描电镜、X射线衍射、X射线光电子能谱等测试方法对材料的形貌和物相进行了表征和分析。结果表明,TiN-rGO复合材料很好地保持了TiN菊花状的三维结构和rGO透明褶皱的形貌,且层状的rGO均匀地包覆在了菊花状的TiN的周围。用TiN-rGO复合材料修饰玻碳电极(GCE)制得了TiN-rGO/GCE电化学传感器,用于测定人体中的生物小分子DA和UA。由于复合材料中TiN和rGO的协同效应,构建的电化学传感器表现出了优秀的电化学性能。检测结果表明:TiN-rGO/GCE传感器对DA和UA的检测限分别为0.11和0.12 μmol·L?1,线性范围分别为0.5~210 μmol·L?1和5~350 μmol·L?1,且具有良好的抗干扰性、重现性和稳定性,且成功应用于人体内真实样品的DA和UA检测
首页上页23456789下页末页
热门关键字
搜索一下,找到相关课件或文库资源 274 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有