点击切换搜索课件文库搜索结果(609)
文档格式:PDF 文档大小:1.18MB 文档页数:155
1 感知机存在的一个问题 2 线性可分 SVM SVM 的种类 函数间隔和几何间隔 学习的原始最优化问 题 凸优化问题 线性可分 SVM 学习算 法—最大间隔法 支持向量与间隔边界 拉格朗日对偶性 KKT 条件 线性可分 SVM 学习的 对偶算法 3 线性不可分 SVM 线性 SVM 学习的对偶 算法 线性 SVM 学习算法 线性不可分时的 SV 合页损失函数 4 非线性 SVM 与核函数 希尔伯特空间 核函数的定义 核函数的选取 核技巧在 SVM 中的应 用 非线性 SVM 算法 5 序列最小最优化算法 SMO 算法的基本思路 两变量二次规划的求 解方法 两个变量的选择方法
文档格式:PDF 文档大小:2.64MB 文档页数:10
为提高无法准确建立数学模型的非线性约束单目标系统优化问题的寻优精度,并考虑获取样本的代价,提出一种基于支持向量机和免疫粒子群算法的组合方法(support vector machine and immune particle swarm optimization,SVM-IPSO).首先,运用支持向量机构建非线性约束单目标系统预测模型,然后,采用引入了免疫系统自我调节机制的免疫粒子群算法在预测模型的基础上对系统寻优.与基于BP神经网络和粒子群算法的组合方法(BP and particle swarm optimization,BP-PSO)进行仿真实验对比,同时,通过减少训练样本,研究了在训练样本较少情况下两种方法的寻优效果.实验结果表明,在相同样本数量条件下,SVM-IPSO方法具有更高的优化能力,并且当样本数量减少时,相比BP-PSO方法,SVM-IPSO方法仍能获得更稳定且更准确的系统寻优值.因此,SVM-IPSO方法为实际中此类问题提供了一个新的更优的解决途径
文档格式:PDF 文档大小:1.21MB 文档页数:8
提出一种基于灰度信息和支持向量机的人眼检测方法.首先,利用人眼区域灰度变化比人脸其他部位灰度变化明显的特征,采用图像灰度二阶矩(方差)建立人眼方差滤波器,在固定人眼搜索区域内,应用人眼方差滤波器搜索候选人眼图像;然后,使用训练的支持向量机分类器精确检测人眼区域位置;最后,采用图像灰度信息率定位人眼中心(虹膜中心).该方法在BioID、FERET和IMM人脸数据库中的测试结果显示:没有佩戴眼镜人脸图像正确率分别为98.2%、97.8%和98.9%,406幅佩戴眼镜人脸图像正确率为94.9%;人眼中心定位正确率分别为90.5%、88.3%和96.1%.通过与目前方法比较,该方法获得较好的检测效果
文档格式:PDF 文档大小:1.56MB 文档页数:10
针对如何识别无人机的问题,提出了一种基于卷积神经网络的声音识别无人机的方法。首先,对100 m范围内的无人机、鸟和人的声音进行采集、预处理和提取MFCC+GFCC特征值,将其特征参数作为卷积神经网络学习和识别的数据集;然后分别设计了支持向量机和卷积神经网络两种模型对无人机等声音进行识别实验。实验结果表明,运用支持向量机识别无人机的准确率为91.9%,卷积神经网络识别无人机的准确率为96.5%。为了进一步验证设计的卷积神经网络的识别能力,在部分UrbanSound8K数据集上进行测试,准确率达到90%。实验结果表明运用卷积神经网络识别无人机具有可行性,且识别性能优于支持向量机
文档格式:PPT 文档大小:313KB 文档页数:21
定义1设a1,a2,…,am,β是一组n维 向量,若存在m个实数k1,k2,…km使得 β=ka1+k2a2++kmam,则称β可以 由a1,a2,…,an线性表示( linear representation).或称a1,a2,…,an线性 表示(linear generate) 例如:a1=(1,2,0)T,a2=(1,0,3)T,a3= (3,4,3)T,则a3=2a1+a2,即存在实数k =2,k2=1使得a3=ka1+k2a2,故a3可以 由a1,a2线性表示。(大家想一想,这里的常 数k1=2,k2=1是怎么求出来的?)
文档格式:PPT 文档大小:2.27MB 文档页数:50
一、数组说明。 二、多个变量间存在某种内在联系时,适于用数组来实现。 三、数组是一系列的匿名变量,数组中的元素可通过下标来访问
文档格式:PDF 文档大小:926.77KB 文档页数:8
为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究。在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirectional long short-term memory, BLSTM)与具有回路的条件随机场(Conditional random field with loop, L-CRF)相结合的命名实体识别方法。首先,对输入语句进行分词和标注,使用Word2vec中的Skip-gram模型对标注语料进行预训练,将其生成的字向量通过词嵌入层转化为字向量序列;然后,将字向量序列输入BLSTM学习长期依赖信息;最后将句子表达输入L-CRF获取全局最优序列。实验结果表明,该方法明显优于其他命名实体识别方法,为数控机床设备的智能检修与实时诊断任务打下了坚实的基础
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:PDF 文档大小:679.95KB 文档页数:9
针对高炉关键异常炉况悬料难以预测的问题,基于D-S证据理论,提出一种综合模糊专家推理和后验概率最小二乘支持向量机的悬料预测方法.首先,结合高炉生产过程和悬料现象,分析悬料形成的内在机理;其次,通过模糊专家推理提取基于专家规则的主观证据,再通过建立后验概率最小二乘支持向量机模型提取基于数据内在客观规律的客观证据;最后,基于D-S证据理论完成主客观证据融合,实现悬料预测.该方法充分利用专家经验和最小二乘支持向量机的自学习能力,能够提高预测精度.仿真结果表明本文提出的方法有效、准确
文档格式:PDF 文档大小:648.63KB 文档页数:9
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好
首页上页4950515253545556下页末页
热门关键字
搜索一下,找到相关课件或文库资源 609 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有