点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:2.64MB 文档页数:10
为提高无法准确建立数学模型的非线性约束单目标系统优化问题的寻优精度,并考虑获取样本的代价,提出一种基于支持向量机和免疫粒子群算法的组合方法(support vector machine and immune particle swarm optimization,SVM-IPSO).首先,运用支持向量机构建非线性约束单目标系统预测模型,然后,采用引入了免疫系统自我调节机制的免疫粒子群算法在预测模型的基础上对系统寻优.与基于BP神经网络和粒子群算法的组合方法(BP and particle swarm optimization,BP-PSO)进行仿真实验对比,同时,通过减少训练样本,研究了在训练样本较少情况下两种方法的寻优效果.实验结果表明,在相同样本数量条件下,SVM-IPSO方法具有更高的优化能力,并且当样本数量减少时,相比BP-PSO方法,SVM-IPSO方法仍能获得更稳定且更准确的系统寻优值.因此,SVM-IPSO方法为实际中此类问题提供了一个新的更优的解决途径
文档格式:PDF 文档大小:892.93KB 文档页数:7
近年来,无人机入侵的事件经常发生,无人机跌落碰撞的事件也屡见不鲜,在人群密集的地方容易引发安全事故,所以无人机监测是目前安防领域的研究热点。虽然目前有很多种无人机监测方案,但大多成本高昂,实施困难。在5G背景下,针对此问题提出了一种利用城市已有的监控网络去获取数据的方法,基于深度学习的算法进行无人机目标检测,进而识别无人机,并追踪定位无人机。该方法采用改进的YOLOv3模型检测视频帧中是否存在无人机,YOLOv3算法是YOLO(You only look once,一次到位)系列的第三代版本,属于one-stage目标检测算法这一类,在速度上相对于two-stage类型的算法有着明显的优势。YOLOv3输出视频帧中存在的无人机的位置信息。根据位置信息用PID(Proportion integration differentiation,比例积分微分)算法调节摄像头的中心朝向追踪无人机,再由多个摄像头的参数解算出无人机的实际坐标,从而实现定位。本文通过拍摄无人机飞行的照片、从互联网上搜索下载等方式构建了数据集,并且使用labelImg工具对图片中的无人机进行了标注,数据集按照无人机的旋翼数量进行了分类。实验中采用按旋翼数量分类后的数据集对检测模型进行训练,训练后的模型在测试集上能达到83.24%的准确率和88.15%的召回率,在配备NVIDIA GTX 1060的计算机上能达到每秒20帧的速度,可实现实时追踪
文档格式:DOC 文档大小:117.5KB 文档页数:19
《小说家谈小说》练习题_语文同步测试:课后达标训练 训练·提升作业 14 小说家谈小说(苏教版 九上)
文档格式:PDF 文档大小:754.89KB 文档页数:8
在输电场景中,吊车等大型机械的运作会威胁到输电线路的安全。针对此问题,从训练数据、网络结构和算法超参数的角度进行研究,设计了一种新的端到端的输电线路威胁检测网络结构TATLNet,其中包括可疑区域生成网络VRGNet和威胁判别网络VTCNet,VRGNet与VTCNet共享部分卷积网络以实现特征共享,并利用模型压缩的方式压缩模型体积,提升检测效率,从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警。针对训练数据偏少的问题,利用多种数据增强技术相结合的方式对数据集进行扩充。通过充分的试验对本方法的多个超参数进行探究,综合检测准确率和推理速度来研究其最优配置。研究结果表明,随着网格数目的增加,准确率也随之增加,而召回率有先增加后降低的趋势,检测效率则随着网格的增加迅速降低。综合检测准确率与推理速度,确定9×9为最优网格划分方案;随着输入图像尺寸的增加,检测准确率稳步上升而检测效率逐渐下降,综合检测准确率和效率,选择480×480像素作为最终的图像输入尺寸。输入实验以及现场部署表明,相对于其他的轻量级目标检测算法,该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性和效率,满足实际应用的需要
文档格式:PDF 文档大小:464.04KB 文档页数:7
通过低氧实验提出一种快速识别人体低氧状态的方法.通过搭建深层神经网络训练实验数据识别氧气体积分数(16%~21%)与人体可耐受极端低氧气体积分数(15.5%~16%)条件下光电容积脉搏波(photoplethysmography, PPG)信号, 获得人体生理状态的模式识别网络.经测试该网络的识别正确率可达92.8%.利用混淆矩阵及接受者操作性能(receiver operating characteristic, ROC)曲线分析, 混淆矩阵的训练集、验证集、测试集、全集识别正确率分别达到97.9%、94.8%、92.8%和96.3%, AUC (area under curve)值接近1, 认为该网络分类性能优良, 并且可在4 s内完成整个识别过程
文档格式:PDF 文档大小:1.33MB 文档页数:11
基于面部动态表情序列,针对静态表情缺少时间信息等问题,将空间特征与时间特征融合,利用神经网络在图像分类领域良好的特征,对需要进行细节分析的表情序列进行处理,提出基于分离式长期循环卷积网络(Separate long-term recurrent convolutional networks, S-LRCN)的微表情识别方法。首先选取微表情数据集提取面部图像序列,引入迁移学习的方法,通过预训练的卷积神经网络模型提取表情帧的空间特征,降低网络训练中过拟合的危险,并将视频序列的提取特征输入长短期记忆网络(Long short-team memory, LSTM)处理时域特征。最后建立学习者表情序列小型数据库,将该方法用于辅助教学评价
文档格式:PDF 文档大小:1.02MB 文档页数:9
在研究富钴结壳高产区地形特征基础上,以富钴结壳站点地理坐标为中心,获得了一平方公里的海拔高度数值矩阵作为地形特征。使用卷积神经网络的分析方法对数值矩阵进行训练,学习坡度和平整度等区域特征,将富钴结壳站点地形和其他海底地形进行区分。依据训练后获得的模型,对富钴结壳高产区进行预测,取得了较好的预测效果,结合其他因素的影响,可以提高结壳靶区选取的精准度
文档格式:PDF 文档大小:1.18MB 文档页数:9
由于协作机器人的结构比普通工业机器人更为轻巧,一般动力学模型所忽略的复杂特性占比较大,导致协作机器人的计算预测力矩误差较大。据此提出在考虑重力、科里奥利力、惯性力和摩擦力等的基础上,采用深度循环神经网络中的长短期记忆模型对自主研发的六自由度协作机器人动力学模型进行误差补偿。在实验中采用优化后的基于傅里叶级数的激励轨迹驱动机器人运动,以电机电流估算关节力矩,获取的原始数据用来训练长短期记忆模型(LSTM)补偿网络。网络的训练结果和评价指标为预测力矩相比实际力矩的均方根误差。计算与实验结果表明,补偿后的协作机器人动力学模型对实际力矩具有更好的预测效果,各轴预测力矩与实际力矩的均方根误差相比于未补偿的传统模型降低了61.8%至78.9%不等,表明了文中所提出补偿方法的有效性
文档格式:PDF 文档大小:1.28MB 文档页数:11
针对提高Wi-Fi指纹室内定位技术性能,提出了一种基于卷积神经网络(Convolutional neural networks,CNN)的信道状态信息(Channel state information,CSI)指纹室内定位方法。在离线阶段联合定位环境参考点的幅度差和相位差信息,利用CNN进行训练,保存训练后的CNN网络模型作为指纹;在线阶段,针对不同实验场景,对测试数据的幅度差信息和相位差信息进行加权处理,引入改进的基于概率的指纹匹配算法,利用待定位点的CSI信息并通过CNN网络模型预测待定位点的坐标。此外,为增强算法普适性,针对复杂室内场景,提出了双节点定位方案来提高定位精度。在廊厅和实验室室内两种不同定位场景进行了实验,信息联合定位算法分别获得了24.7 cm和48.1 cm的平均定位误差,验证了基于CNN的CSI幅度差和相位差联合定位算法的有效性
文档格式:DOC 文档大小:31.5KB 文档页数:9
《寻觅春天的踪迹》作文训练及范文(3篇)_八年级下册第二单元作文训练_寻觅春天的踪迹
首页上页5051525354555657下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有