Part I Listening Comprehension (20 minutes) Directions: In this section, you will hear ten short conversations.At the end of each conversation, a question will be asked about what was said.Both the conversation and the question will be spoken only once. After each questio n there will be a pause. During the pause
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE) 0EFNE兵8uNcH0 f PoINTS
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE)
Lecture 4 Introduction to Spline Curves 4.1 Introduction to parametric spline curves Parametric formulation =r(u),y=y(u), z=2(u) or R=R(u)(vector notation) Usually applications need a finite range for u(e.g. 0
Lecture 6 B-splines(Uniform and Non-uniform) 6.1 Introduction The formulation of uniform B-splines can be generalized to accomplish certain objectives These include Non-uniform parameterization Greater general flexibility Change of one polygon vertex in a Bezier curve or of one data point in a cardinal(or interpolatory) spline curve changes entire curve(global schemes) Remove necessity to increase degree of Bezier curves or construct composite Bezier curves
Lecture 3 Differential geometry of surfaces 3.1 Definition of surfaces Implicit surfaces F(r,,a)=0 Example: 22+6+2=1 Ellipsoid, see Figure 3.1 Figure 3.1: Ellipsoid · Explicit surfaces If the implicit equation F(, y, a)=0 can be solved for one of the variables as a function