点击切换搜索课件文库搜索结果(5513)
文档格式:PPT 文档大小:398KB 文档页数:18
Lagrange定理4y=f(x+0x).给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文档格式:DOC 文档大小:211.5KB 文档页数:5
第十节二阶常系数非齐次线性微分方程 1.二阶常系数非齐次线性微分方程的形式,及f(x)为两种不同形式 2.时的解法
文档格式:PPT 文档大小:565KB 文档页数:29
其它展开 一、周期为2L的周期函数展开成 Fourier级数 前面我们所讨论的都是以2为周期的函数 展开成 Fourier级数,但在科技应用中所遇到的 周期函数大都是以T为周期,因此我们需要讨论 如何把周期为T=2l的函数展开为 Fourier级数 若f(t)是以T=2l为周期的函数,在[-l,l) 上满足 Dirichlet条件
文档格式:DOC 文档大小:205KB 文档页数:4
第九节周期为2L的周期函数的傅里叶级数 1、以2L为周期的傅氏级数 2.将函数展开为以2L为周期的傅氏级数
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:674.5KB 文档页数:24
一、区域连通性的分类 设D为平面区域,如果D内任一闭曲线所围成的部分都属于D,则称D为平面单连通区域,否则称为复连通区域
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:262KB 文档页数:19
d d2+p(x)+Q(x)y=f(x)二阶线性微分方程 当f(x)=0时,二阶线性齐次微分方程 当f(x)≠0时,二阶线性非齐次微分方程
文档格式:DOC 文档大小:281.5KB 文档页数:6
第八节空间直线及其方程 1.空间直线的一般方程 2.空间直线的对称式方程与参数方程 3.两直线的夹角
文档格式:PPT 文档大小:535.5KB 文档页数:28
微积分基本公式 在上一节我们已经看到,直接用定义 计算定积分是十分繁难的,因此我们期 望寻求一种计算定积分的简便而又一般 的方法。我们将会发现定积分与不定积 分之间有着十分密切的联系,从而可以 利用不定积分来计算定积分
首页上页538539540541542543544545下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5513 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有