点击切换搜索课件文库搜索结果(733)
文档格式:DOC 文档大小:354KB 文档页数:51
内容:1 连续函数的局部性质 2 区间上的连续函数的基本 性质 3 反函数的连续性 4 一致连续性 重点:连续函数的局部性质性质; 区间上的连续函数的基本性质
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于∑中任一向量,表达式a=a1+a2+…+am,a1e,i=12,m是唯一的,则称∑V为直和,记为
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:26.5KB 文档页数:1
一、排列的定义 定义 1 由 1,2,  ,n 组成的一个有序数组称为一个 n 级排列
文档格式:DOC 文档大小:86KB 文档页数:2
定义 2 所谓数域 P 上一个 n 维向量就是由数域 P 中 n 个数组成的有序数组
文档格式:DOC 文档大小:116.5KB 文档页数:3
一、向量的线性相关与线性无关 定义 2 设 V 是数域 P 上的一个线性空间
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:PPT 文档大小:1.22MB 文档页数:8
定义: 设P是一个数域,元是一个文字,P是多项式环, 若矩阵A的元素是的多项式,即P2的元素,则 称A为九一矩阵,并把A写成A(4 注: ①∵PcPI孔],∴数域P上的矩阵一数字矩阵也 是一矩阵
文档格式:DOC 文档大小:101KB 文档页数:3
λ-矩阵也可以有初等变换 定义3下面的三种变换叫做-矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数c; (3)矩阵有某一行(列)加另一行(列)的()倍,φ()是一个多项式
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
首页上页5758596061626364下页末页
热门关键字
搜索一下,找到相关课件或文库资源 733 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有