点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.1MB 文档页数:47
直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的 积分法换元积分法。通常根据换元的先后, 把换元法分成第一类换元和第二类换元
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:901.5KB 文档页数:44
函数极限 关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势,即x→∞时,f(x)的极限 二、当自变量x无限地接近于x时,f(x)的变化趋势即x→x时,f(x)的极限
文档格式:DOC 文档大小:588KB 文档页数:10
第六章定积分 第一节定积分的概念 思考题: 1.如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值: (1) xdx,(2)r2-x2dx -1 ,(3)[2* cos xdx, (4)xdx
文档格式:PPT 文档大小:395KB 文档页数:18
4牛顿法 Newton- Raphson Method 原理:将非线性方程线性化 Taylor展开/ Taylor's expansion取x0≈x,将∫(x)在x做一阶 Taylor展开:师人,在和x之间 将(x*-x0)2看成高阶小量,则有:下m只要∫∈C,每一步迭代都有f'(xk)≠0,而且Iim=测 x就是∫的根
文档格式:PPT 文档大小:615KB 文档页数:23
一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M*是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:159KB 文档页数:9
通过对不均匀量(如曲边梯形的面积, 变速直线运动的路程)的分析,采用“分 割、近似代替、求和、取极限”四个基本 步骤确定了它们的值,并由此抽象出定积 分的概念,我们发现,定积分是确定众多 的不均匀几何量和物理量的有效工具。那 么,究竟哪些量可以通过定积分来求值呢? 我们先来回顾一下前章中讲过的方法和步 骤是必要的
文档格式:PPT 文档大小:1.02MB 文档页数:37
上一节我们建立了积分学两类基本问题 之间的联系——微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:389.5KB 文档页数:15
闭区间上连续函数的性质 闭区间上的连续函数有着十分优良的性质, 这些性质在函数的理论分析、研究中有着重 大的价值,起着十分重要的作用。下面我们 就不加证明地给出这些结论,好在这些结论 在几何意义是比较明显的
首页上页5859606162636465下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有