◆ Background ◆ Preliminary Concepts ◆ Sampling and the Fourier Transform of Sampled Functions ◆ The Discrete Fourier Transform of One Variable ◆ Extension to Functions of Two Variables ◆ Some Properties of the 2-D Discrete Fourier Transform ◆ The Basics of Filtering in the Frequency Domain ◆ Image Smoothing Using Frequency Domain Filters ◆ Image Sharpening Using Frequency Domain Filters ◆ Selective Filtering
In this lecture, we consider the problem of a body in which the mass of the body changes during the motion, that is, m is a function of t, i.e. m(t). Although there are many cases for which this particular model is applicable, one of obvious importance to us are rockets. We shall see that a significant fraction of the mass of a rocket is the fuel, which is expelled during flight at a high velocity and thus, provides the propulsive force for the rocket
We will start by studying the motion of a particle. We think of particle as a body which has mass, but has negligible dimensions. Treating bodies as particles is, of course, an idealization which involves an approximation. This approximation may be perfectly acceptable in some situations and not adequate in some other cases. For instance, if we want to study the motion of planets it is common to consider each planet as a particle