点击切换搜索课件文库搜索结果(701)
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给出这个集合的元素所具有的特征性质
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:DOC 文档大小:83KB 文档页数:3
用秩的概念,线性方程组(1)有解的条件可以叙述如下: 定理 7(线性方程组有解判别定理) 线性方程组(1)有解的充要条件为它的系 数矩阵
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式
文档格式:PPT 文档大小:364KB 文档页数:10
一、排列与对换 排列的定义:由n个数码1,2,…,n组成的一 个无重复的有序数组称为这n个数 码的一个排列,简称为n元排列。 例如,312是一个3元排列,2341是一个4元排列, 45321是一个5元排列,等等
文档格式:PPT 文档大小:272.5KB 文档页数:13
对一般的数字行列式,如果它的元素之间没有特定的规律, 其计算方法是: 1)利用行列式性质把它化为上三角或下三角行列式,则 行列式的值等于其主对角线上元素的连乘积; 2)选定某一行(列),利用行列式性质把其中元素尽可 能多的化为0;然后按这一行(列)展开,如此继续下去 可得结果
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给 出这个集合的元素所具有的特征性质
文档格式:PPT 文档大小:457KB 文档页数:15
本节讨论有理数域上多项式的可约性,以及如 何求Q上多项式的有理根,由于f(x)与qf(x)在 Q[x]上的可约性相同。因此讨论f(x)在Q上的可约 性可转化为求整系数多项式在Q上的可约性
文档格式:PPT 文档大小:522KB 文档页数:20
对称多项式是多元多项式中常见的一种,也是一 类比较重要的多元多项式,它的应用比较广泛,对称 多项式的来源之一以及它应用的一个重要方面,是一 元多项式根的研究,下面我们从一元多项式的根与系 数的关系谈起
首页上页6465666768697071下页末页
热门关键字
搜索一下,找到相关课件或文库资源 701 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有