当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 4 - Eigenvalue

资源类别:文库,文档格式:PDF,文档页数:6,文件大小:131.54KB,团购合买
点击下载完整版文档(PDF)

KeytoMatlabExercise4SchoolofMathematicalSciencesXiamenUniversityhttp:/gdjpkc.xmu.edr Key to MATLAB Exercise 4-Eigenvalue >>A=[323-2l,[vdj=eig(A) 0.8944-0.3162 0.44720.9487 0 >> det(v) ans 0.9899 The eigenvalues of A are 4 and-3, and the corresponding eigenspaces are V4=(a(0.8944,0.4472), for any a in R) and V-3=a(-0.3162, 0.9487) for any a in) A isn 't defective, i. e. A is diagonalizable because the determinant of v is not zero The keys to 2)to 9)are omitted >>A=[200.040,102]B=[200.040-362] > eig(A) ans 2 >> eig(B) 2 2 Notice As 2 are multiple eigenvalues, we can't judge whether A is similar to B only by their eigenvalues. That is, we may say A is similar to b if a and b have the same Jordan normal forms >>XA, JordanA=jordan(A) XA= 0 0 0 0 JordanA= >>XB, JordanB =jordan(B XB= Key to Ex4-1

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­1  Key to MATLAB Exercise 4 – Eigenvalue  1.  1) >> A=[3 2;3 ­2]; [v,d]=eig(A) v =  0.8944  ­0.3162  0.4472  0.9487  d =  4  0  0  ­3  >> det(v) ans =  0.9899  The eigenvalues of A are 4 and ­3, and the corresponding eigenspaces are V4={a (0.8944,0.4472)’| for any a in R} and V­3= {a (­0.3162, 0.9487)’| for any a in R}.  A isn't defective, i.e. A is diagonalizable, because the determinant of v is not zero.  The keys to 2) to 9) are omitted.  2. >> A=[2 0 0;0 4 0;1 0 2]; B=[2 0 0;0 4 0;­3 6 2];  >> eig(A) ans =  2  2  4  >> eig(B) ans =  2  2  4  Notice As 2 are multiple eigenvalues, we can’t judge whether A is similar to B only by their  eigenvalues. That is, we may say A is similar to B if A and B have the same Jordan normal forms.  >> [XA, JordanA] = jordan(A) XA =  0  0  1  1  0  0  0  1  0  JordanA =  4  0  0  0  2  1  0  0  2  >> [XB, JordanB] = jordan(B) XB =  0  0  2

Key to MATLAB Exercise 4 School of Mathematical Sciences Xiamen Univer http:/edjpkc.xmu.ed 00 Jordan 400 A is similar to B because JordanA is equal to JordanB >>VA, DA=eig(A) 00.0000 0 0 0000-1.0000 0 DA= 200 0 020 >>VB, DBFeig(B) VB 00.0000 0 00.3162 1.00001.0000 200 020 >> rank( VA)rank(VB) C, 2, 4 are the eigenvalues of A and B, and the rank of va equals that of VB, which means that a has the same jordan normal form as b. therefore a is similar to b >> A=rand(4 4) P.poly(A) 1.0000-1.54300.0898-0.03100.1878 It means that the characteristic polynomial is x-1.543x+0.0898x-003 1x+0.1878 14313 -0.2427+0.40lll -0.2427-040llil The eigenvalues (or characteristic roots ) of A are 1. 4313, 0.5970.-02427+0.401li and Key to Ex4-2

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­2  1  0  0  3  ­6  ­3  JordanB =  4  0  0  0  2  1  0  0  2  A is similar to B because JordanA is equal to JordanB.  Or >> [VA, DA]=eig(A) VA =  0  0.0000  0  0  0  1.0000  1.0000  ­1.0000  0  DA =  2  0  0  0  2  0  0  0  4  >> [VB, DB]=eig(B) VB =  0  0.0000 0  0  0 0.3162  1.0000  1.0000 0.9487  DB =  2  0  0  0  2  0  0  0  4  >> rank(VA)==rank(VB) ans =  1  2, 2, 4 are the eigenvalues of A and B, and the rank of VA equals that of VB, which means that  A has the same Jordan normal form as B. Therefore A is similar to B.  3. >> A=rand(4);  >> P=poly(A) P =  1.0000  ­1.5430  0.0898  ­0.0310  0.1878  It means that the characteristic polynomial is 4 3 2 x -1.543x + 0.0898x - 0.031x + 0.1878 >> roots(P) ans =  1.4313  0.5970  ­0.2427 + 0.4011i  ­0.2427 ­ 0.4011i  The eigenvalues  (or characteristic roots ) of A are 1.4313,  0.5970.  ­0.2427+0.4011i  and

Key to MATLAB Exercise 4 School of Mathematical Sciences Xiamen Univer http:/edjpkc.xmu.ed 0.2427-0.40ll >>A=[01;10}[X1,D=eig(A) -0.70710.7071 0.70710.7071 > rank(X1size(X1, 1) ans The answer is Xl= 0707107071//-10 -0.70710.7071 Here Xl is an invertible matrix We may check Xl by other functions such as det, rref and so on [X2, -0.70710.7071 ans 0 Therefore X2 is the answer too 0.50000.5000 0.50000.5000 0 ans Therefore X3 is also the answer The keys to 2)to 6)are omitted

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­3  ­0.2427 ­ 0.4011i.  4. 1) >> A=[0 1;1 0]; [X1, D]=eig(A) X1= ­0.7071  0.7071  0.7071  0.7071  D = ­1  0  0  1  >> rank(X1)==size(X1, 1) ans =  1  The answer is 0.7071 0.7071 1 0.7071 0.7071 X Ê - ˆ = Á ˜ Ë ¯ ,  1 0  0 1 D Ê- ˆ = Á ˜ Ë ¯ . Here X1 is an invertible matrix.  We may check X1 by other functions such as det, rref and so on.  Or >> [X2, S]=schur(A) X2 = ­0.7071  0.7071  0.7071  0.7071  S =  ­1  0  0  1  >> X2*S*inv(X2) ans =  0  1.0000  1.0000  0  Therefore X2 is the answer, too.  Or >> [X3,J]=jordan(A) X3 = 0.5000  0.5000  ­0.5000  0.5000  J =  ­1  0  0  1  >> X3*J*inv(X3) ans =  0  1  1  0  Therefore X3 is also the answer.  The keys to 2) to 6) are omitted

Key to MATLAB Exercise 4 School of Mathematical Sciences Xiamen Univer http:/edjpkc.xmu.ed >>A=2 1; -2 1: v, d=eig(A): B=v'sqrt(d)*inv(v) 1.51190.3780 -0.75591.1339 B= 2.000010000 2.000 1.0000 The key to 2)is omitted 6 > format rational; A=01-1; 120: -103: >> U, T=schur(A) 1661/6691-1573/4601 1573/4601 755/833-1661/6691 1661/66911573/4601 755/833 T 655/1006 0 00 665/1172 0 2874/851 >>A=[ll:2310; >>u,S, v]=svd(A) -0.35830.2312-0.9045 -0.9208-0.24740.3015 -0.15410.94090.3015 3.9090 00.8485 0.60220.7983 -0.7983-0.6022 > Singular ValuesOfA=diag(s) 3.9090 0.8485 > RootofAA-roots(poly(A*A)) Rootofaa= 15.2801 0.7199 Key to Ex4-4

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­4  5. 1) >> A=[2 1;­2 1];[v, d]=eig(A);B= v*sqrt(d)* inv(v) B =  1.5119  0.3780  ­0.7559  1.1339  >> B*B ans =  2.0000  1.0000  ­2.0000 1.0000  The key to 2) is omitted.  6. >> format rational; A=[0 1 ­1;1 2 0;­1 0 3];  >> [U, T]=schur(A) U =  ­755/833  1661/6691  ­1573/4601  1573/4601  755/833  ­1661/6691  ­1661/6691 1573/4601  755/833  T =  ­655/1006 0  0  0  2665/1172 0  0  0  2874/851  7. >> A=[1 1;2 3;1 0];  >> [u, s, v]=svd(A) u =  ­0.3583  0.2312  ­0.9045  ­0.9208  ­0.2474  0.3015  ­0.1541  0.9409  0.3015  s =  3.9090  0  0  0.8485  0  0  v =  ­0.6022  0.7983  ­0.7983  ­0.6022  >> SingularValuesOfA = diag(s)  SingularValuesOfA =  3.9090  0.8485  >> RootOfAA=roots(poly(A’*A)) RootOfAA =  15.2801  0.7199

Key to MATLAB Exercise 4 School of Mathematical Sciences Xiamen Univer http:/edjpkc.xmu.ed >> abs( Singular ValuesOfA. 2-RootOfAA)>A=[4 3 12; -17-110: 1 12 3 Poly=poly(A); roots( PolyA) 16.8781 2.4391+10.695li 2.4391-10.6951i eig(A) ans 2.4391+10.695li 2.4391-10.6951i ans -16.87812.1204-124708 0243917.7919 14679924391 ans 218740 14.6390 6.3427 >>svd(A)2 478.4705 40.2293 40.2293 214.3003 478.4705 The above show that we may use functions eig and roots to calculate the eigenvalues of a matrix. The result of function schur is in real that is. it will not show the eigenvalues of A if there are complex eigenvalues. And svd provides the values which are the square roots of th eigenvalues ofA'A >>Alrand(4): bl=A1+Al generate a symmetric matrix B Key to Ex4-5

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­5  >> abs(SingularValuesOfA.^2­RootOfAA) > A=[­4 3 12; ­17 ­11 0; 1 12 3]; PolyA=poly(A); roots(PolyA) ans =  ­16.8781  2.4391 +10.6951i  2.4391 ­10.6951i  >> eig(A) ans =  ­16.8781  2.4391 +10.6951i  2.4391 ­10.6951i  >> schur(A) ans =  ­16.8781  2.1204  ­12.4708  0  2.4391  7.7919  0  ­14.6799  2.4391  >> svd(A) ans =  21.8740  14.6390  6.3427  >> svd(A)^2  ans =  478.4705  214.3003  40.2293  >> eig(A'*A) ans =  40.2293  214.3003  478.4705  The above show that we may use functions  eig and roots to calculate the eigenvalues  of a matrix. The result of function schur is in real, that is, it will not show the eigenvalues of A if there are complex  eigenvalues.  And svd provides  the values  which  are the square roots of the eigenvalues of A’A.  9. >> A1=rand(4); B1=A1+A1';  % generate a symmetric matrix B1

Key to MATLAB Exercise 4 School of Mathematical Sciences Xiamen Univer http:/edjpkc.xmu.ed > A2=10*rand(4): B2-A2*A2, generate a symmetric matrix B2 We omitted the following for it is similar to that of exlo > P=fix(10*rand(3)); >>Dl=diag(0,1,2]),D2=diag(1:3); JordanI=100,021;002] > Singular Matrix*DI for Dl is a singular matrix > NotSingularMatrix=P*D2 >>Diagonal Matrix P any symmetric matrix is diagonal >>Qr=qr(P); >>NotDiagonalMatrixQ"*Jordani*Q 11. Omitted Key to Ex4-6

Key to MATLAB Exercise 4  School of Mathematical Sciences Xiamen University  http://gdjpkc.xmu.edu.cn  Key to Ex4­6  >> A2=10*rand(4); B2=A2*A2';  % generate a symmetric matrix B2  We omitted the following for it is similar to that of Ex10.  10.  >> P=fix(10*rand(3));  >> D1=diag([0, 1, 2]); D2=diag(1:3); Jordan1=[1 0 0; 0 2 1; 0 0 2];  >> SingularMatrix=P*D1;  % for D1 is a singular matrix  >> NotSingularMatrix=P*D2;  >> DiagonalMatrix=P’ *P;  % any symmetric matrix is diagonal.  >> [Q r]=qr(P);  >> NotDiagonalMatrix=Q’*Jordan1*Q;  11.  Omitted

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有