点击切换搜索课件文库搜索结果(905)
文档格式:PPT 文档大小:1.44MB 文档页数:108
§1高分子材料的基础知识 §2高分子材料 §3陶瓷 §4复合材料
文档格式:PDF 文档大小:402.38KB 文档页数:4
对(l-x)(80% B4C-20% SiC)/x C(体积分数)功能梯度材料的x=0.2,0.4,0.6,0.8的各层分别在2000℃,20MPa进行了热压,测定了各层的密度,线膨胀系数,弹性模量和抗弯强度等.按线性成分分布函数的6层和11层梯度材料热压后都出现了裂纹.采用了不同于幂函数的S型成分分布函数设计,热压了11层(x=0.2~1.0)的功能梯度材料,其抗弯强度为216MPa,抗热震性>500℃
文档格式:PDF 文档大小:7.98MB 文档页数:8
通过共沉淀和原位煅烧转化方法, 将Pd掺杂δ-MnO2前驱体煅烧后制备得到Pd掺杂α-MnO2纳米棒催化材料.通过氮气物理吸附、X射线衍射、透射电子显微镜、扫描电子显微镜、热重分析、X射线光电子能谱等技术对催化材料进行了表征.扫描电镜和透射电镜结果显示, α-MnO2纳米棒表面没有明显的Pd纳米颗粒, 表明Pd可能掺杂到α-MnO2晶格中.纯α-MnO2的还原温度在390℃左右, 但Pd掺杂可以极大地促进α-MnO2还原, 还原温度可低至约200℃左右.研究了所制备催化剂在无溶剂条件下对于以分子氧为氧化剂选择性催化氧化苯甲醇为苯甲醛的催化性能.结果表明: 在无溶剂及用纯氧气为氧化剂条件下, Pd掺杂α-MnO2纳米棒对苯甲醇氧化显示出增强的催化活性; 所掺杂的氧化态Pd物质可增强催化材料中的氧迁移率; 在这些Pd掺杂α-MnO2催化材料中, 当以Pd (3%, 质量分数) -MnO2为催化剂时, 在110℃反应4 h后, 苯甲醇的转化率为39%, 远高于同条件下以纯α-MnO2为催化剂时18. 3%的苯甲醇转化率
文档格式:DOC 文档大小:365KB 文档页数:6
1.理解构件的强度、刚度和稳定等概念。 2.明确材料力学的研究对象、任务和范围。 3.了解材料力学的基本假设。 4.了解杆件变形的基本形式
文档格式:PDF 文档大小:429.7KB 文档页数:3
以经典无限大叠层板理论和热弹性力学为基础,通过自行开发的计算机辅助设计系统对SiC/C FGM中的热应力分布进行了理论分析,得到制备SiC/C的功能梯度材料最佳工艺参数.采用热压烧结工艺,在1950℃,25 MPa和保温1h的条件下制备出了F4和F7两种无宏观缺陷的块体SiC/C功能梯度材料.采用SEM对FGM微观结构进行了观察.500℃室温淬水实验表明,按最佳参数制备的功能梯度材料F7具有良好的抗热震性能
文档格式:PDF 文档大小:12.9MB 文档页数:253
5.1 ⾼分⼦材料的发展 5.2 ⾼分⼦科学的重要性 5.3 ⾼分⼦聚合反应类型 5.4 ⾼分⼦材料的结构特点 5.5 ⾼聚物的性能 5.6 ⾼聚物的应⽤
文档格式:PPT 文档大小:169KB 文档页数:49
第3章机械工程材料 3、1金属材料的性能 使用性能:金属材料在使用条件下所表现出来的性能
文档格式:PDF 文档大小:317.45KB 文档页数:4
研制了一种由羰基铁粉和导电聚苯胺(PAn)复合而成的新型宽频带雷达吸波材料.通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析其微观组成是羰基铁粉表面包覆聚苯胺;复合吸收剂0.9mm单层吸波涂层在6~18GHz范围内吸收量达5dB.通过设计还可以进一步拓宽频带和增强吸收.这种材料重量较轻、耐腐蚀、频带宽,有望开发成为实用吸波材料
文档格式:PDF 文档大小:1.42MB 文档页数:3
同质结:由同种半导体材料构成的N区或P区,形成的PN结。如将两块带隙宽度相同、掺杂不 同的半导体材料,在一定的条件下生长在一起形成同质结。 异质结:两种带隙宽度不同的半导体材料生长在同一块单晶上形成的结。 同型异质结:结的两边导电类型相同:NN,PP结 异型异质结:结的两边导电类型不相同:NP,PN结 对于异型异质结:两种材料的带隙不同
文档格式:PDF 文档大小:797.72KB 文档页数:15
在机械制造中,广泛采用轧制、锻造、冲击、冷压与冷镦等成形工艺,各 种压力加工方法都应使金属材料按预定的要求进行塑性变形,以使其内部的组织和结构发 生变化,从而达到不同的性能指标。塑性变形是强化金属的重要手段。变形后的金属在加 热时发生回复和再结晶,进一步影响工件最终的组织及性能。研究金属材料塑性变形及再 结晶过程,有助于深入理解变形加工过程中组织演变规律及各种力学性能变化的本质,在生 产实践中充分发挥金属材料的强度潜力,为确定合适的压力加工工艺和退火工艺提供依据
首页上页6667686970717273下页末页
热门关键字
搜索一下,找到相关课件或文库资源 905 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有