点击切换搜索课件文库搜索结果(699)
文档格式:PDF 文档大小:1.26MB 文档页数:10
随着物联网技术的发展,前端传感器的使用使得低合金钢的海水腐蚀监测成为了现实,从而获得了大量的腐蚀数据。针对传统均值法处理双率腐蚀数据带来的数据信息损失以及建模精度下降问题,提出了一种基于综合指标值(CIV)和改进相关向量回归(IRVR)的双率腐蚀数据处理和建模算法(CIV-IRVR)。首先,通过构建CIV表征输入数据的综合影响并采用天牛须搜索(BAS)算法对其参数进行寻优;然后,建立最优CIV序列与输出数据间的线性回归模型将双率数据转化为建模用的单率数据,能够更多地保留原始数据信息;最后,给出了一种BAS算法优化的具有组合核函数的改进相关向量回归建模方法(IRVR),并建立了针对低合金钢海水腐蚀双率数据的CIV-IRVR预测模型。结果表明:相比于均值方法处理双率腐蚀数据,所提方法将建模样本数量由196提升到了1834;相比于海水腐蚀建模领域常用的人工神经网络(ANN)和支持向量回归(SVR)建模方法,所提模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(CD)分别为1.1914 mV、1.5729 mV以及0.9963,在各项指标上均优于对比算法,说明所提模型不仅减少了信息损失还提高了建模精度,对于双率海水腐蚀数据建模具有一定现实意义
文档格式:PDF 文档大小:1.43MB 文档页数:9
高质量睡眠与儿童的身体发育、认知功能、学习和注意力密切相关,由于儿童睡眠障碍的早期症状不明显,需要进行长期监测,因此急需找到一种适用于儿童睡眠监测,且能够提前预防和诊断此类疾病的方法。多导睡眠图(Polysomnography,PSG)是临床指南推荐的睡眠障碍基本检测方法,通过观察PSG各睡眠期间的变化和规律,对睡眠质量评估和睡眠障碍识别具有基础作用。本文对儿童睡眠分期进行了研究,利用多导睡眠图记录的单通道脑电信号,在Alexnet的基础上,用一维卷积代替二维卷积,提出一种1D-CNN结构,由5个卷积层、3个池化层和3个全连接层组成,并在1D-CNN中添加了批量归一化层(Batch normalization layer),保持卷积核的大小保持不变。针对数据集少的情况,采用了重叠的方法对数据集进行了扩充。实验结果表明,该模型儿童睡眠分期的准确率为84.3%。通过北京市儿童医院的PSG数据获得的归一化混淆矩阵,可以看出,Wake、N2、N3和REM期睡眠的分类性能很好。对于N1期睡眠,存在将N1期睡眠被误分类为Wake、N2和REM期睡眠的情况,因此以后的工作应重点提升N1期睡眠的准确性。总体而言,对于基于带有睡眠阶段标记的单通道EEG的自动睡眠分期,本文提出的1D-CNN模型可以实现针对于儿童的自动睡眠分期。在未来的工作中,仍需要研究开发更适合于儿童的睡眠分期策略,在更大数据量的基础上进行实验
文档格式:PDF 文档大小:1.35MB 文档页数:8
以相变材料为核心的潜热储存技术,对加快新能源开发和提高能源利用率起着关键性作用。以油酸钙为前驱体,通过水热法合成了具有自支撑网络结构的羟基磷灰石(HAP)气凝胶,并采用浸渍法制备出自支撑羟基磷灰石复合相变材料。通过扫描电镜、傅里叶红外光谱、X射线衍射、热重法、差示扫描量热法等手段对所制备复合相变材料的形貌、稳定性、热性能等进行了表征及测试。实验结果表明,负载石蜡或十八醇的羟基磷灰石气凝胶复合相变材料均具有良好的热性能,质量分数60%石蜡@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值分别为85.10和85.30 J·g?1,结晶度为81.50%;质量分数60%十八醇@HAP气凝胶复合相变材料的熔融焓和凝固焓测量值为113.78和112.25 J·g?1,结晶度为86.20%,且具有很好的热稳定性和化学稳定性。此外,羟基磷灰石气凝胶载体材料阻燃性好,无腐蚀且安全环保,有效拓展了相变材料在智能保温纺织物和建筑材料等领域的实际应用
文档格式:PDF 文档大小:1.34MB 文档页数:9
为研究堆浸体系矿石粒径分布对孔隙结构的影响,对不同级配矿岩散体构成的浸柱开展显微CT扫描测试,得到浸柱内部结构图像。通过阈值分割算法对孔隙结构进行提取,建立浸柱三维孔隙模型,对浸柱体孔隙率和面孔隙率的空间分布特征进行研究。利用最大球算法构建浸柱孔隙网络模型,进而分析矿石粒径分布对孔喉半径、喉道长度、孔喉体积、形状因子和配位数等参数的影响规律。结果表明:矿石颗粒级配性越好,矿堆孔隙率越低;矿石粒径越均匀,矿堆不同区域孔隙率差异越小;矿石粒径分布对孔隙尺寸和连通性影响较为显著,对孔喉形状因子影响较小。随着细颗粒矿石的减少,大孔隙增多,孔喉半径、喉道长度和孔喉体积相应增大;随着矿石粒径均匀性的增加,堆浸体系中孤立孔隙所占比例减少,高配位数孔隙所占比例增大,即矿堆内的孔隙空间具有更好的连通性
文档格式:PDF 文档大小:1.76MB 文档页数:10
针对漏钢时结晶器铜板温度呈现出的“时间滞后”和“空间倒置”等典型特征,本文通过引入动态时间弯曲(DTW)和机器学习中的密度聚类(DBSCAN)方法,提取、汇集并区分结晶器温度的典型变化模式,在此基础上开发出一种新型的漏钢预报方法。借助动态时间弯曲度量不同拉速、钢种或工艺操作条件下结晶器热电偶温度的相似性,并运用密度聚类方法聚集和分离正常工况、黏结漏钢状况下的温度样本,在此基础上检测和预报结晶器漏钢。结果证实,相较于传统的逻辑判断和人工神经元网络预报结晶器漏钢的方法,基于聚类的漏钢预报方法无需人为设置阈值或参数,能够依据漏钢历史样本中温度变化的共性规律,提取并融合热电偶温度在时间、空间上典型的变化特征,准确区分和预报结晶器漏钢,具有较好的自适应性和鲁棒性
文档格式:PDF 文档大小:3.7MB 文档页数:9
提出了一种联合多种边缘检测算子的无参考质量评价算法,同时考虑一阶和二阶边缘算子,避免了单一算子的局限性.该方法首先将彩色图像转换为灰度图像,然后计算灰度图像的梯度,相对梯度以及LOG特征.本文所使用的特征分为两部分,一部分提取相对梯度方向的标准差,另一部分利用条件熵来量化不同特征之间的相似性和相互关系,并且考虑到人眼特性进行多尺度计算,最后使用自适应增强(AdaBoost)神经网络进行训练和预测.在公共数据库LIVE和TID2008上进行实验,结果表明新方法对失真图像的预测评分与主观评分有较高的一致性,能很好地反映图像质量的视觉感知效果,仅使用10维特征,性能优于现有的主流无参考质量评价算法
文档格式:PDF 文档大小:759.98KB 文档页数:8
中文电子病历文本包含大量嵌套实体、句子语法结构复杂、句式偏短。为有效识别其医疗实体,提出一种融合多特征嵌入与注意力机制的命名实体识别算法,在输入表示层融合字符、单词、字形三个粒度的特征,并在双向长短期记忆网络的隐含层引入注意力机制,使算法在捕获特征时更加关注于医疗实体相关的字符,最终实现对中文电子病历中疾病、身体部位、症状、药物、操作五类实体的最优标注。面向开源和自建糖尿病数据集的实验结果中所提算法的实体识别准确率、召回率和F1值都达到97%以上,表明其可以更加有效地识别中文电子病历中各类实体
文档格式:PDF 文档大小:1.01MB 文档页数:10
医生诊断需要结合临床症状、影像检查等各种数据,基于此,提出了一种可以进行数据融合的医疗辅助诊断方法。将患者的影像信息(如CT图像)和数值数据(如临床诊断信息)相结合,利用结合的信息自动预测患者的病情,进而提出了基于深度学习的医疗辅助诊断模型。模型以卷积神经网络为基础进行搭建,图像和数值数据作为输入,输出病人的患病情况。该医疗辅助诊断方法能够利用更加全面的信息,有助于提高自动诊断准确率、降低诊断误差;另外,仅使用提出的医疗辅助诊断模型就可以一次性处理多种类型的数据,能够在一定程度上节省诊断时间。在两个数据集上验证了所提出方法的有效性,实验结果表明,该方法是有效的,它可以提高辅助诊断的准确性
文档格式:PDF 文档大小:926.77KB 文档页数:8
为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究。在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirectional long short-term memory, BLSTM)与具有回路的条件随机场(Conditional random field with loop, L-CRF)相结合的命名实体识别方法。首先,对输入语句进行分词和标注,使用Word2vec中的Skip-gram模型对标注语料进行预训练,将其生成的字向量通过词嵌入层转化为字向量序列;然后,将字向量序列输入BLSTM学习长期依赖信息;最后将句子表达输入L-CRF获取全局最优序列。实验结果表明,该方法明显优于其他命名实体识别方法,为数控机床设备的智能检修与实时诊断任务打下了坚实的基础
文档格式:PDF 文档大小:4.96MB 文档页数:8
研究了Co掺杂对还原氧化石墨烯(RGO)/Fe3O4复合材料结构、形貌和吸波性能的影响规律.采用一步水热法分别制备RGO/Fe3O4和Co掺杂的RGO/Fe3O4复合材料,通过扫描电子显微镜、X射线衍射仪和X射线光电子能谱分析Co掺杂对复合材料的微观形貌、相组成及表面元素价态的影响;利用矢量网络分析仪测定两种复合材料在2~18 GHz频率范围内的相对复介电常数和复磁导率,模拟计算了Co掺杂对RGO/Fe3O4复合吸波性能的影响规律.结果表明:部分Co参与了水热反应生成了CoCO3、Co3O4和Co2O3,还有部分Co以单质形式存在,其通过正负电荷吸引机制,影响Fe3+在氧化石墨烯(GO)表面的配位,使得负载在还原氧化石墨烯(RGO)表面的Fe3O4纳米颗粒部分迁移至RGO片层间;Co掺杂改善了复合材料的导电能力和磁损耗能力,使复合材料的吸波能力显著增强.反射率模拟结果表明:掺杂后与掺杂前相比,当匹配厚度d=2.00 mm时,最大反射损耗提高3.44 dB,有效吸收频带拓宽2.88 GHz;当匹配厚度d=2.50 mm时,最大反射损耗提高8.45 dB,有效吸收频带拓宽2.73 GHz.Co掺杂对RGO/Fe3O4复合材料的结构和形貌有显著影响,并有效改善复合材料的吸波性能
首页上页6364656667686970下页末页
热门关键字
搜索一下,找到相关课件或文库资源 699 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有