Example 1.6. Consider the graph y(x) cos(x) over [0.0, 1.2]. (a) Use the nodes xo=0.0andx1=1.2 to construct linear interpolating polynomial Pi(). (b)Use the nodes xo 0.2 and x =1.0 to construct a linear approximating polynomial()
Example 1. 1. The iterative rule po 1 and pk+1= 1.001pk for k=0, 1,..pro- duces a divergent sequence. The first 100 terms look as follows: P1=1.0170=(1.001010001.00100 p2=1011=(1001)(1.0000001 3=1012=(1001)(1.002011.00300 p100=1.0019(1.001)(1.104012)=1.105116
Theorem 3.7. (Elementary Transformations). The following opera- tions applied to a linear system yield an equivalent system: ()Interchange: The order of two equations can be changed. (2)Scaling: Multiplying an equation by a nonzero constant. (3)Replacement: An equation can be replaced by the sum of itself and a nonzero multiple of any other equation
第三章解线性方程组的直接法 Direct Method for Solving Linear Systems 求解A=万 1高斯消元法Gaussian Elimination*1 高斯消元法思首先将A化为上三角阵l*uper--triangular matrix*1路,再回代求解l* backward substitution*1
1 Mathematical Preliminaries and Error Analysis 2 Solutions of Equations in One Variable 3 Interpolation and Polynomial Approximation 4 Numerical Differentiation and Integration 5 Initial-Value Problems for Ordinary Differential Equations 6 Direct Methods for Solving Linear Systems 7 IterativeTechniques in Matrix Algebra 8 ApproximationTheory 9 Approximating Eigenvalues 10 Numerical Solutions of Nonlinear Systems of Equations 11 Boundary-Value Problems for Ordinary Differential Equations 12 Numerical Solutions to Partial Differential Equations