点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.36MB 文档页数:93
第一节神经元活动的一般规律 一、神经元和神经纤维 Neuron Nerve fiber (一)神经元的基本结构和功能
文档格式:PDF 文档大小:758.84KB 文档页数:36
一、发展认知神经科学学科简介 二、发展认知神经科学的起点 三、发展认知神经科学研究的主要领域 四、发展认知神经科学研究展望 五、发展认知神经科学研究对学前教育的启示
文档格式:PDF 文档大小:752.67KB 文档页数:6
以某钢厂1580热连轧生产数据为基础,提出一种有限元与神经网络集成建模的方法.该方法首先对轧制过程的塑性变形进行有限元建模,然后结合有限元数值分析方法和智能技术的优点,实现有限元和神经网络的集成建模.集成模型中的神经网络模型为有限元模型提供参数调整的依据,并且在神经网络训练过程中使用改进的混沌粒子群优化算法对神经网络进行优化.通过与现场实际生产数据进行比较,验证了该模型的有效性
文档格式:PDF 文档大小:913.74KB 文档页数:7
采用贝叶斯统计学原理改进传统神经网络算法,通过在神经网络的目标函数中引入表示网络结构复杂性的约束项,避免网络的过拟合以提高网络的泛化能力.将改进的神经网络应用于济钢1700mm热连轧机带钢厚度预测中,其预报精度、训练时间和网络稳定性均优于传统神经网络预测;然后应用贝叶斯神经网络预测带钢塑性系数;最后将出口带钢厚度和带钢塑性系数的实时预测值综合应用于带钢热连轧厚度控制系统,改进了传统的厚度控制方式,进一步提高带钢质量
文档格式:PDF 文档大小:378.94KB 文档页数:5
以工业PID控制中控制器参数调整困难为背景,在分析神经网络特性的基础上,提出神经网络控制方法,设计了具有自适应性的神经网络PID控制器。在描述了神经网络的学习机理的基础上,给出了控制器控制算法。通过2个实例验证了神经网络在线控制的可行性
文档格式:PDF 文档大小:497.75KB 文档页数:7
通过将迟滞特性引入神经元激励函数的方式,构造了一种前向型迟滞神经网络模型.结合卡尔曼滤波方法,将其应用于风速时间序列的预测分析中.在原始风速时间序列的基础上,构造出风速变化率序列.采用迟滞神经网络分别对两种序列进行预测分析,并将预测结果利用卡尔曼滤波方法进行融合,从而得到最优预测估计结果.仿真实验结果表明,迟滞神经网络具有更加灵活的网络结构,能够有效改善网络的泛化能力,预测性能优于传统神经网络.采用卡尔曼滤波方法对预测结果进行融合后能够进一步提高预测精度,降低预测误差
文档格式:PPT 文档大小:27.17MB 文档页数:86
动物生活中的运动与平衡、内脏的活动和血液的供应、代谢产物的排放等均受神经系统的控制和调节。一旦神经系统发生异常,立即平衡失调,或肌肉松弛或代谢障碍等,甚至危及动物的生命。因此,神经系统是调整动物体内外环境的平衡,进行生命活动的重要器官
文档格式:PPT 文档大小:5.05MB 文档页数:48
神经元 一、神经元的基本结构 二、神经纤维 三、感受器及效应器 四、突触 五、神经元的变性和再生
文档格式:PPT 文档大小:1.01MB 文档页数:27
1.昆虫神经系统的功能; 2.神经冲动传递机制(难点); 3.各类神经毒剂作用机制(重点)
文档格式:PDF 文档大小:3.13MB 文档页数:7
针对机器人谐波减速器关节在转动过程中存在的波动摩擦力矩, 提出一种基于傅里叶级数函数和BP神经网络的建模方法, 并完善机器人的动力学模型, 修正了因波动摩擦力矩带来的关节力矩计算误差. 通过研究谐波减速器关节的波动摩擦力矩在不同影响因素下的变化特性, 采用傅里叶级数与BP神经网络结合的方法对波动摩擦力矩进行建模. 通过添加傅里叶级数函数作为BP神经网络的辅助输入, 克服了力矩误差曲线因存在高频周期性波动而难以拟合的困难. 在离线环境下训练神经网络, 完成对关节波动摩擦力矩的建模, 进而完善机器人的动力学模型和修正关节中存在的波动摩擦力矩. 验证实验表明, 使用完善后的动力学模型可以有效计算谐波减速器关节的波动摩擦力矩, 并使修正后的力矩误差维持在[-0.5, 0.5] N·m的范围之内, 方差为0.1659 N2·m2, 是修正前的24.23%
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有