点击切换搜索课件文库搜索结果(1189)
文档格式:DOC 文档大小:132KB 文档页数:4
在 n 维线性空间中,任意 n 个线性无关的向量都可以取作空间的基.对于不 同的基,同一个向量的坐标一般是不同的.随着基的改变,向量的坐标是怎样变 化的
文档格式:DOC 文档大小:109KB 文档页数:3
定理 5 如果 V1 ,V2 是线性空间 V 的两个子空间,那么它们的交 V1 V2 也是 V 的子空间
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:DOC 文档大小:66.5KB 文档页数:2
定义6设A是线性空间V的一个线性变换,的全体像组成的集合称为 的值域,用AV表示所有被A变成零向量的向量组成的集合称为A的核,用 A-(0)表示 若用集合的记号则AV={A55∈V},a-(0)={A5=0,5∈V} 线性变换的值域与核都是V的子空间 AV的维数称为A的秩,A-(0)的维数称为A的零度
文档格式:DOC 文档大小:54.5KB 文档页数:3
由前面的讨论可知,并不是对于每一个线性变换都有一组基,使它在这组基 下的矩阵成为对角形.下面先介绍一下,在适当选择的基下,一般的一个线性变 换能化简成什么形状
文档格式:DOC 文档大小:60KB 文档页数:1
设P是数域,是一个文字,作多项式环P[],一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵.在这一章讨论矩阵的一些性质, 并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在矩阵中也包括以数为元素的 矩阵.为了与λ-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩阵.以
文档格式:DOC 文档大小:108KB 文档页数:3
现在来证明,-矩阵的标准形是唯一的 定义5设λ-矩阵A(4)的秩为r,对于正整数k,1≤k≤r,A(4)中必有非 零的k级子式.A(4)中全部k级子式的首项系数为1的最大公因式D(4)称为 A(A)的k级行列式因子 由定义可知,对于秩为r的λ-矩阵,行列式因子一共有r个行列式因子的 意义就在于,它在初等变换下是不变的
文档格式:DOC 文档大小:81.5KB 文档页数:3
一、初等因子的概念 定义7把矩阵A(或线性变换A)的每个次数大于零的不变因子分解成互 不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次 数计算)称为矩阵A(或线性变换A)的初等因子 例设12级矩阵的不变因子是
文档格式:DOC 文档大小:61KB 文档页数:2
前一节中证明了复数域上任一矩阵A可相似于一个若尔当形矩阵这一节将 对任意数域P来讨论类似的问题我们证明了上任一矩阵必相似于一个有理标 准形矩阵
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
首页上页6768697071727374下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1189 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有