网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(990)
北京大学:《高等代数》课程教学资源(讲义)第二学期第八次课
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.1 幂零线性变换的 Jordan 标准型
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.5.2)可逆矩阵,方阵的逆矩阵
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E,则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数运算
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.5.2)可逆矩阵方阵的逆矩阵
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E, 则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数 运算
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.4)矩阵的运算
文档格式:DOC 文档大小:232KB 文档页数:3
第二章4矩阵的运算 2.4.1矩阵运算的定义 定义(矩阵的加法和数乘)给定两个mn矩阵 [a1a12an [b1b12…b A= a21 a22 a2n B= b21b22…b2 : : Lamt am22a bmbm2b A和B加法定义为
《线性代数》第二章 矩阵(2.3)矩阵的秩和初等变换
文档格式:PPT 文档大小:548.5KB 文档页数:23
冷矩阵的秩( Rank of a matrix) 定义1在mxn矩阵A中,任取k行k列(k≤m,k ≤n),位于这些行列交叉处的k2个元素,不 改变它们在A中所处的位置次序而得的k阶行列 式,称为矩阵A的k阶子式。 定义2如果矩阵A有一个不等于零的阶子式D, 并且所有的r+1阶子式(如果有的话)全为零 则称D为矩阵A的最高阶非零子式,称r为矩阵 A的秩,记为R(A)=r,并规定零矩阵的秩等 于零
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(1/2)
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.VV上的一个函数(,·),如果满足: (i)(,)对第一个变量是线性的; (ii)(a,)=(B,a); (iii)a∈v,(a,a)≥0,且(a,a)=0a=0
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(1/2)
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.3)线性方程组的理论课题
文档格式:DOC 文档大小:285KB 文档页数:5
第二章3线性方程组的理论课题 3.1.1齐次线性方程组的基础解系 对于齐次线性方程组 ax1+a12x2+…+anxn=0 Ja12x1+a22x2++ =0, ……… amx+am2x2+…+=0 令 (a1)(a1 a22 a1= a2,a2= ,…,an= am2/ amn 则上述方程组即为
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.3 线性空间的基与维数,向量的坐标
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标设V是数域K上的线性空间, 定义4.9基和维数如果在V中存在n个向量a1,a2,…,an,满足 (1)、a1,a2,…,an线性无关; (2)、V中任一向量在K上可表成a1,a2,…,an的线性组合,则称a1,a2,,an为V的一组基
首页
上页
67
68
69
70
71
72
73
74
下页
末页
热门关键字
山西警官职业学院
生物碱
智能化
制导与控制原理
梧州职业学院
图]
科学探索与发现
火炸药用药原理
函数连续性
高世明 浙江水利水电学院
法学理论与经典案例分析
内脏学
酶
马克思主义中国化
旅游市场营销学
旅游市场调查
录音
流体方程
理化分析
课件
就设计基础
交配
家畜免疫学
家畜传染病
湖北工业大学]
光信息
工程应用]
工程师]
工程报价
港口国管理
刚体静力学
辐射
电子显微镜
电火花
导
答案
材料工程学
《行政管理学》
材料测试与分析
《施工企业会计》
搜索一下,找到相关课件或文库资源
990
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有