点击切换搜索课件文库搜索结果(820)
文档格式:DOC 文档大小:232KB 文档页数:3
第二章4矩阵的运算 2.4.1矩阵运算的定义 定义(矩阵的加法和数乘)给定两个mn矩阵 [a1a12an [b1b12…b A= a21 a22 a2n B= b21b22…b2 : : Lamt am22a bmbm2b A和B加法定义为
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.VV上的一个函数(,·),如果满足: (i)(,)对第一个变量是线性的; (ii)(a,)=(B,a); (iii)a∈v,(a,a)≥0,且(a,a)=0a=0
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:DOC 文档大小:285KB 文档页数:5
第二章3线性方程组的理论课题 3.1.1齐次线性方程组的基础解系 对于齐次线性方程组 ax1+a12x2+…+anxn=0 Ja12x1+a22x2++ =0, ……… amx+am2x2+…+=0 令 (a1)(a1 a22 a1= a2,a2= ,…,an= am2/ amn 则上述方程组即为
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标设V是数域K上的线性空间, 定义4.9基和维数如果在V中存在n个向量a1,a2,…,an,满足 (1)、a1,a2,…,an线性无关; (2)、V中任一向量在K上可表成a1,a2,…,an的线性组合,则称a1,a2,,an为V的一组基
文档格式:DOC 文档大小:182.5KB 文档页数:6
解法1因为D1= =0 1132 1432 D1与D的第1列元素的代数余子式相同 所以将D1按第1列展开可得A1+A21+A31+A41=0. 解法2因为D的第3列元素与D的第1列元素的代数余子式相乘求和 为0,即3A1+3A21+3A31+3A41=0 所以
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合, 则称a1,a2,,an为V的一组基。 基即是V的一个极大线性无关部分组
文档格式:PDF 文档大小:206.48KB 文档页数:47
矩阵 矩阵的秩及其求法 1.利用定义求矩阵的秩 利用定义求矩阵的秩就是利用矩阵的子式或行列式是否为零来确定矩阵的秩. 例1设A=(a1)nxn为非零矩阵,A1为a的代数余子式,若an=A,求r(A). 解因为A≠0,所以至少有一个元素an≠0;将|A|按第i行展开,有
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系
文档格式:DOC 文档大小:419.5KB 文档页数:5
8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: 1)加法满足结合律; 2)加法满足加换律 3)有一个数0,是对任意整数a,0+a=a; 4)对任意整数a,存在整数b,使b+a=0 5)乘法满足结合律 6)有一个数1,是对任意整数a,la=a 7)加法与乘法满足分配律:a(b+c)=ab+ac
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 820 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有