网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(924)
北京大学:《高等代数》课程教学资源(讲义)第三章 行列式(3.1-3.2)2n阶方阵的行列式(1/2)
文档格式:DOC 文档大小:287.5KB 文档页数:4
3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.2.2 线性变换的张量积的定义
文档格式:DOC 文档大小:55KB 文档页数:1
命题在同构意义下张量积满足交换律、结合律以及与直和的分配律,即 VOV= V1(2V3)=(V1V2)V3 V1(2V3)=(V1V2)⊕(VV3) 证明利用张量积的定义性质。 12.2.2线性变换的张量积的定义 定义12.5线性变换的张量积 设V1,V2为K线性空间,A为V1上的线性变换,B为V2上的线性变换。定义A和 B的张量积(记为AB)为V1V2上的线性变换: AB:V1V2→V1V2
《高等数学》课程电子教案:第九章 向量与空间解析几何习题与答案
文档格式:DOC 文档大小:584KB 文档页数:9
第九章向量与空间解析几何 第一节空间直角坐标系与向量的概念 思考题: 1.求点M(x,y,z)与x轴,xOy平面及原点的对称点坐标 解:M(x,y,z)关于x轴的对称点为M1(x-,-z),关于xOy平面的对称点为 M2(x,y-z),关于原点的对称点为M3(-x,-y-z) 2.下列向量哪个是单位向量? (1)ri+i+,(2a-(3)b=33 解:(1)∵=√12+12+12=√3≠1,∴r不是单位向量 (2)=()2+02+(=)2=1,a是单位向量 √ √2 (3)∵3)2++(2=,b不是单位向量
北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.1 线性空间上的线性函数的定义 5.1.2 双线性函数
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
《高等数学》课程教学资源:电子教案:第九章 重积分
文档格式:DOC 文档大小:68KB 文档页数:5
一、教学目标与基本要求 1、教学目标 本章从曲顶柱体的体积和平面薄片的质量这两个实际例子引入二重积分的概念,不 加以证明地指出二重积分存在的充分条件对二重积分的性质只加以叙述,而不予证明, 将三重积分自然地看成是二重积分的推广总的精神就是对概念和性质不作分析上的严 格要求,而把重点放在讨论二重积分和三重积分的计算上,计算二重积分和三重积分的 基本途径是将它们化为二次与三次积分,但在直角坐标系下计算二次与三次积分有时会 比较困难
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.2子空间的交与和,生成元集 4.2.3 维数公式
文档格式:DOC 文档大小:204KB 文档页数:3
4.2.2子空间的交与和,生成元集 定义4.13设a1,a2,,a,∈V,则{ka1+k2a2++ka,k∈K,i=12}是V的 一个子空间,称为由a1,a2,,a,生成的子空间,记为(aa2,,a)易见,生成的子 空间的维数等于a1,a2,…,a的秩。 定义4.14子空间的交与和 设V1,V2为线性空间VK的子空间,定义 vnv2={ VEV2},称为子空间的交 V1+V2={v+v2v∈V1,v2∈V2},称为子空间的和。 命题4.9VNV2和V1+V2都是V的子空间
《高等代数》课程教学资源(讲义)第一章 多项式
文档格式:DOC 文档大小:1.13MB 文档页数:29
关于数的加、减、乘、除等运算的性质通常称为数的代数性质代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的 全体所共有的。 定义1设P是由一些复数组成的集合,其中包括0与1.如果P中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P就称为一个数域显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域这三个数域分别用字母Q、R、C来代表全体整数组成的集合就不是数域如果数的集合P中任意两个数作某一种运算的结果都仍在P中,就说数集 P对这个运算是封闭的因此数域的定义也可以说成,如果一个包含0,1在内的数集P对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P就称为一个数域
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.2 C,R,Q 上多项式的因式分解 9.2.2 Q[ ] x 内多项式的因式分解
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
文档格式:DOC 文档大小:434KB 文档页数:4
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=ax+a1x+…+an-1x+an∈K[x],定义 f\(x)=na\+(n-1)\-+..+[], 称f(x)为f(x)的一阶形式微商。 设f(x)的k-1阶形式微商已定义,记作f((x)则定义它的k阶形式微商fx)为 f(x)的一阶形式微商:f((x)=(f((x)另外我们约定f(x)=f(x) 命题设f(x)∈K[x],如果K[x]内的不可约多项式p(x)是f(x)的k重因式,则 p(x)是f(x)的k-1重因式
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换(续)
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量 ( a:a 显然Aa=a=a'a'=a'a'a==a'aa=aa=aa=1从而 入|=1 推论正交矩阵的特征值只能是±1 命题设A是n维欧氏空间V上的正交变换,若A的特征多项式有一个根=e
首页
上页
79
80
81
82
83
84
85
86
下页
末页
热门关键字
变压]
热分析
内力]
流体分析
食品设备
分配
C程序与设计
《物流运输管理》
信用
化学定律
电势
变形
《心理学》
FLASH动画
思维游戏与思维方法
化工数学
传热与基本原理
变形]
保健学
半导体三极
现代材料分析方法
网络信号
弯曲内力
统计软件分析
农业微生物学
民法学原理
抗震设计
经济贸易
教学组织与设计
化学原理
电影作品分析
大脑
《生产运作管理》
“电工电子技术”
动态分析
电力电子技术
创造方法学
博弈与经济学
编程控制器
DSP课程设计
搜索一下,找到相关课件或文库资源
924
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有