点击切换搜索课件文库搜索结果(990)
文档格式:PPS 文档大小:8.8MB 文档页数:181
§7.1 离子的迁移 1.电解质溶液的导电机理 2.法拉第定律 3.离子的迁移数 §7.2 电解质溶液的电导 1. 电导、电导率、摩尔电导率 2. 电导的测定 3. 电导率和摩尔电导率随浓度的变化 4. 离子独立运动定律及离子摩尔电导率 §7.3 电导测定的应用示例 1. 求算弱电解质的电离度和电离平衡常数 2. 求算微溶盐的溶解度和溶度积 3. 电导滴定 §7.4 强电解质的活度和活度系数 1.离子的平均活度a± 和平均活度系数± 2.影响离子平均活度系数±的因素 §7.5 强电解质溶液理论简介 1. 离子氛模型及德拜-尤格尔极限公式 2.不对称离子氛及德拜-尤格尔-盎萨格电导公式 §7.6 可逆电池 1.可逆电池的必要条件 2.可逆电极的种类 3.电动势的测定 4.电池表示法 5.电池表达式与电池反应的“互译” §7.7 可逆电池热力学 1.可逆电池电动势与浓度的关系——能斯特方程 2. 电动势及其温度系数与电池反应热力学量的关系 3. 离子的热力学函数 §7.8 电极电势 1. 电池电动势产生机理 2. 电极电势 (1) 标准氢电极 (SHE) (2) 任意电极的电极电势数值和符号的确定 (3) 电极电势的能斯特公式 (4) 参比电极 §7.9 由电极电势计算电池电动势 §7.10 电极电势和电池电动势的应用 1. 判断反应趋势 2. 求化学反应的K 3. 求微溶盐的活度积Kap 4. 求离子的平均活度系数  5. 测定pH 6. 电势滴定 §7.11 电极的极化 1. 过电势 2. 电极极化的原因 3. 过电势的测定 §7.12 电解时的电极反应 1.阴极反应(还原反应) 2.阳极反应(氧化反应) §7.13 金属的腐蚀与防腐 §7.14 化学电源简介
文档格式:PDF 文档大小:904.93KB 文档页数:65
(一)亲核取代反应—— 亲核加成-消去历程及反应活性。 (二)羧酸衍生物的还原反应及产物 (三)羧酸衍生物(酯)与格氏试剂的反应 (四)酯α-H的反应(几个缩合反应) (五)酰胺的Hofmann降级反应
文档格式:PDF 文档大小:781.7KB 文档页数:33
一、酚羟基的反应 1、酸性规律 2、成醚反应 3、成酯反应及Fries重排 二、环上的取代反应 1、卤化、硝化、磺化、Friedel-Crafts反应; 2、Reimer-Tiemann反应; 3、Kolble-Schmitt反应;
文档格式:PPT 文档大小:1.16MB 文档页数:97
7-1反应速率及其测定 7-2反应物浓度对反应速率的影响 7-3反应级数的确定 7-4基元反应、反应分子数 7-5对峙反应、平行反应、连串反应 7-6链反应 7-7快速反应的研究方法 7-8温度对反应速率的影响
文档格式:PPT 文档大小:2.1MB 文档页数:197
§11.1 化学反应的反应速率及速率方程 §11.2 速率方程的积分形式 §11.3 速率方程的确定 §11.4 温度对反应速率的影响,活化能 §11.5 典型复合反应 § 11.6 复合反应速率的近似处理法 §11.7 链反应(chain reaction) §11.8 气体反应的碰撞理论 §11.9 势能面与过渡状态理论 §11.10 溶液中反应 §11.11 多相反应 §11.12 光化学
文档格式:PPT 文档大小:1.62MB 文档页数:143
一、取代反应 二、加成反应 三、消除反应 四、氧化还原反应 五、缩合反应 六、重排反应
文档格式:PPT 文档大小:591KB 文档页数:57
§4 活化能与元反应速率理论简介 §5 液相反应和多相反应动力学分析 §6 催化反应动力学 §7 反应速率的实验测定原理与方法
文档格式:PPT 文档大小:651KB 文档页数:22
血清学反应:抗原抗体在体外结合的反应,因 实施反应的某些重要因素是含抗体的动物血清 ,故名血清学反应。 血清学反应具有严格的特异性和较高的敏感性 ,因此可用抗原或抗体的已知一方检测未知的 另一方,作为传染病的辅助诊断和微生物的鉴 定
文档格式:PPT 文档大小:102KB 文档页数:14
溶剂效应对亲核取代反应所起的作用,不仅是重要 的,而且是复杂的,主要是通过影响过渡态的稳定性从 而影响反应活化能,以达到影响反应速率。 绝大部分S1反应是由中性分子离解成带电荷的离子 ,过渡态的电荷比反应物有所增加。溶剂极性增加,使过渡态的能量降低,从而降低反应的活化能,使反应加 速
文档格式:PDF 文档大小:2.43MB 文档页数:7
为了揭示硼铁精矿的碳热还原机理,以高纯石墨为还原剂,进行硼铁精矿含碳球团等温还原实验,并采用积分法进行动力学分析.还原温度分别设定为1000、1050、1100、1150、1200、1250和1300℃,配碳量即C/O摩尔比=1.0.当还原度为0.1<α<0.8时,温度对活化能和速率控制环节有重要影响:还原温度≤1100℃时,平均活化能为202.6 k J·mol-1,还原反应的速率控制环节为碳的气化反应;还原温度>1100℃时,平均活化能为116.7 k J·mol-1,为碳气化反应和Fe O还原反应共同控制.当还原度α≥0.8时(还原温度>1100℃),可能的速率控制环节为碳原子在金属铁中的扩散.碳气化反应是含碳球团还原过程中主要速率控制环节,原因在于硼铁精矿中硼元素对碳气化反应具有较强烈的化学抑制作用
首页上页8687888990919293下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有