点击切换搜索课件文库搜索结果(86)
文档格式:PDF 文档大小:1.76MB 文档页数:10
针对漏钢时结晶器铜板温度呈现出的“时间滞后”和“空间倒置”等典型特征,本文通过引入动态时间弯曲(DTW)和机器学习中的密度聚类(DBSCAN)方法,提取、汇集并区分结晶器温度的典型变化模式,在此基础上开发出一种新型的漏钢预报方法。借助动态时间弯曲度量不同拉速、钢种或工艺操作条件下结晶器热电偶温度的相似性,并运用密度聚类方法聚集和分离正常工况、黏结漏钢状况下的温度样本,在此基础上检测和预报结晶器漏钢。结果证实,相较于传统的逻辑判断和人工神经元网络预报结晶器漏钢的方法,基于聚类的漏钢预报方法无需人为设置阈值或参数,能够依据漏钢历史样本中温度变化的共性规律,提取并融合热电偶温度在时间、空间上典型的变化特征,准确区分和预报结晶器漏钢,具有较好的自适应性和鲁棒性
文档格式:PDF 文档大小:1.28MB 文档页数:8
基于最优分类线的概念,提出了一种新的模式识别分类器构建方法——判别域界面几何法.该方法利用BP神经网络的高度非线性,将模式类样本数据从高维输入空间映射至二维判别域空间后,采用多边形中轴提取方法,构造模式类间隙多边形的中轴线,延伸至整个二维判别域空间,生成模式类决策边界.以铁路货车车轮用双列圆锥滚子轴承的故障诊断为例,介绍了判别域界面几何法的应用过程.结果表明,判别域界面几何法能在二维判别域空间上给出各不同故障模式类之间明确的界限,这就给操作者直观判断故障模式类别提供了条件
文档格式:PDF 文档大小:2.27MB 文档页数:7
在冶金、化工等流程型工业领域,生产中的过程控制参数往往具有高维非线性结构特征.为了解决这类高维复杂数据的异常点检测问题,本文引入了软超球体的概念,采用非线性核函数将原始数据映射到高维的特征空间,并在特征空间中确定软超球体的边界.通过检测待识别样本映射到特征空间的位置信息来判定过程参数的设定值是否为异常点,从而避免出现批量的产品质量问题.以某类汽车用钢为应用实例,对实际生产数据进行检测,证明了所提出的基于软超球体的异常点识别算法对于高维的非线性数据具有良好的检测能力
文档格式:PDF 文档大小:568.33KB 文档页数:7
多年来,由于对钛矿的无序开采,使得海南岛东部出现大面积的土地荒漠化.采用遥感的手段进行跟踪监测,合理地授予采矿权,组织适当的复垦,是解决当地荒漠化的有效途径.基于不同沙地类型在地表空间结构上的差异,提出将基于地质统计学的影像纹理应用到荒漠化监测中,通过变异函数纹理来加大各种不同类别沙地间的区别,提高样本选择的分离度.结果表明,运用变异函数纹理结合光谱波段的最大似然分类方法能够很好地界定海滩沙地和内陆荒漠地的等级,最高分类精度达到92.4%,证明了基于地质统计学的影像纹理在实现该地区遥感荒漠化监测方面的有效性
文档格式:PDF 文档大小:1.98MB 文档页数:9
基于对已有三维人耳重建工作和形变模型理论的研究,充分结合人耳自身的结构特征,提出了一种新的三维人耳重建方法——基于人耳形变模型的方法.首先使用中垂线法完成了外耳轮廓特征点的定位;提出分级三角网格法,解决了样本耳基于生理特征的稠密对应问题;再借鉴广义普鲁克分析的思想,在三维空间内实现了精确全自动的三维人耳形状对齐;最后训练得到了三维人耳形变模型.所提方法只需一幅二维图像,即可获得足够稠密的三维人耳模型.在UND三维人耳数据库和USTB三维重建人耳数据库上的大量实验证明所提方法的有效性和优越性
文档格式:PDF 文档大小:8.62MB 文档页数:9
行星齿轮箱振动信号包含多种频率成分和噪声干扰,频谱具有复杂的边带结构,容易对故障识别造成误导甚至引起错判.在不同故障状态下,行星齿轮箱振动信号的多域特征量将偏离正常范围且偏离程度不同,根据这一特点,提取振动信号的时域、频域特征参量用于故障识别.为了避免传统分析方法中负频率及虚假模态问题,增强对噪声干扰的鲁棒性,采用局部均值分解法将信号自适应地分解为单分量之和,提取时频域单分量瞬时幅值能量.针对多域特征空间构造过程中出现的高维及非线性问题,采用流形学习对数据进行降维处理.提出基于改进的虚假近邻点的本征维数估计及最优k邻域确定方法,并通过等距映射对多域特征空间进行降维分析.对于行星齿轮箱实验信号,根据样本流形特征聚类结果,分别识别出了太阳轮、行星轮和齿圈的局部故障,从而验证了上述方法的有效性
首页上页23456789
热门关键字
搜索一下,找到相关课件或文库资源 86 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有