点击切换搜索课件文库搜索结果(185)
文档格式:PDF 文档大小:440.15KB 文档页数:7
采用交互作用正交试验设计,系统研究了进液流量、进气流量、CO2体积分数、进液温度及其交互作用对填料塔中二乙醇胺溶液吸收CO2的转化率η和气相总体积传质系数KGae的影响.经过直观分析和方差分析,评价了各参数对η和KGae影响的显著程度.实验发现进液流率、进气流率、CO2体积分数、进液温度,以及CO2体积分数与进气流率、进液温度与进液流率、进液温度与进气流率的交互作用对η影响显著;进液流率、进气流率、CO2体积分数、进液温度、CO2体积分数与进气流率的交互作用以及进液温度与进气流率的交互作用对KGae影响显著;进气流率增加,η降低而KGae增加;进液流率增加,η和KGae均增加;进气CO2体积分数增加,η和KGae均降低;进液温度升高,η和KGae均呈先增加后减小趋势
文档格式:PDF 文档大小:1.18MB 文档页数:10
为了提高小型两床变压吸附(PSA)制氧机在变产品气流量下的氧气体积分数,建立了改进的Skarstrom两床循环PSA制氧实验装置,研究了产品气流量对其氧气体积分数的影响。研究结果表明,在低产品气流量运行条件下,通过提高清洗气总氧量与原料气总氧量之比(P/F)以及降低最高吸附压力与最低解吸压力之比(θ)可消除氧气返混的不利影响;在高产品气流量运行条件下,通过提高P/F和θ可以提高实验装置中分子筛的工作能力,进而提高产品气中的氧气体积分数。在此基础上,对低和高产品气流量运行条件下的P/F和θ进行了调节,分别将产品气流量为3.55 L·min?1和19.88 L·min?1时的氧气体积分数从92.4%增加至了95.7%和从74.0%增加至了74.9%。本文的研究结果可为变产品气流量下PSA制氧工艺参数优化提供参考
文档格式:PDF 文档大小:0.99MB 文档页数:4
基于地转偏向力的原理和120 t侧顶复吹AOD炉的构造,对AOD炉和地转偏向力的关系进行了理论分析和计算,认为地转偏向力通过对AOD炉内侧枪和顶枪气流的作用影响其流场.针对本研究的AOD炉,计算表明地转偏向力使顶枪气流从出口到熔池液面发生7.92×10-8(°)的偏转,使侧枪气流发生1.88×10-4(°)的偏转,说明地转偏向力对侧枪气流的影响更大
文档格式:PDF 文档大小:506.74KB 文档页数:6
通过水模型实验研究了复吹转炉中顶吹、底吹及熔池产生的CO气流对熔池的搅拌作用。按正交实验设计法,由实验得出吹炼中期和后期影响熔池内传质的主要因素及合适的顶吹和底吹气量。在高速脱碳期,顶吹和底吹气流的搅拌作用与CO气流的相比可忽略不计;在脱碳后期,底吹气流对熔池的搅拌起主要作用。在吹炼后期,底吹气量为5Nm3/h时可达到最佳的搅拌效果。根据水模型实验结果,回归整理出混匀时间和容量传质系数的准数方程
文档格式:PDF 文档大小:2.36MB 文档页数:20
本文论证了Stelco第6号和第7号焦炉燃烧室物理模型是能够定性地决定火焰的位置及高度的,模型表明燃烧室中控制燃烧的流动条件受到空气流动状态的强烈影响,尤其是和连接蓄热室和空气喷口的倾斜上升道有关。在6号焦炉燃烧室中空气流量分二部分供入,此时煤气流被从下空气喷口出流的倾斜空气射流吸至燃烧室的一侧,在7号炉燃烧室中,所有空气是从一个庭部喷口进入燃烧室的,由于倾斜空气流引起燃烧室中再循环气流,它控制着化学当量混合火焰的高度,同样可以看到,从煤气喷口底部通过一个小圆孔进入的煤气实际上是一个限制射流;它造成在喷口中的再循环促进了煤气高温裂解的可能性。应用模型来决定\火焰\的高度及位置,和从正在加热的燃烧室拍摄的照片大致相符,但正如所预期的那样,实际火焰约比根据模型化学当量混合浓度预测的火焰要高1.35至1.5倍,通过模型预测的火焰高度和测得的焦碳VTD结果相符较好,尤其对6号焦炉是如此。还应用模型研究了6号和7号焦炉燃烧室改变操作后的效果,其中包括在6号焦炉中采用改变气流的装置如转向砖,煤气喷口延伸管以及空气喷口角部盖板以及减少7号燃烧室的过剩O2等,模型试验表明只有采用延伸管能有效地使火焰在6号焦炉燃烧室下半部分布更均匀,而对7号炉来说采用5%过剩O2将获得同样的效果。模型试验的潜力和局限性需要继续研究,因为它们为燃烧室设计操作和燃烧以及它对VTD的影建立了重要的联系,可以认为这不仅是对上述个别燃烧室设计及操作条件的叙述,它还将对燃烧室系统的工作提供一般性的见解
文档格式:PDF 文档大小:548.21KB 文档页数:5
在一维平面层流煤粉气流着火的数学模型的基础上,发展了一种更加逼近工程实际的一维平面紊流煤粉气流着火模型.在该数学模型的指导下,设计了高温空气煤粉点火试验台.通过大量的空气加热试验和煤粉气流着火试验,对模型进行了实验验证.结果显示,理论模型的计算结果与实验相符合,验证了高温空气煤粉点火技术的可行性
文档格式:PDF 文档大小:422.87KB 文档页数:9
快速(真空)变压吸附循环周期较短,床层压力周期性变化快,使吸附床内流动及传热传质特性变化较大,本文研究吸附及解吸压力对快速变压吸附制氧床内速度及循环性能的影响.快速变压吸附(rapid pressure swing adsorption,RPSA)循环中原料气充压阶段气流速度远大于顺流的气体流速极限值,快速真空变压吸附(rapid vacuum pressure swing adsorption,RVPSA)循环中原料气充压阶段气流速度略大于顺流的气体流速极限值,而RPSA循环和RVPSA循环中放空降压阶段气流速度均较大.在所研究的吸附和解吸压力范围内,RPSA循环和RVPSA循环中气体温度在循环周期内变化均约为10℃,而RVPSA循环中气体温度在循环周期内温度梯度更大.RPSA循环中吸附压力越高,氧气回收率越高,床层因子越小;而RVPSA循环中解吸压力越低,氧气回收率越高,床层因子越小
文档格式:PDF 文档大小:3.08MB 文档页数:13
利用实验及CFD模拟软件分别研究非空调工况下以及空调工况的送氧口个数、送氧口管径、送氧流量及送氧方式、不同的气流组织形式(同侧上送下回、异侧上送下回)等发生变化对密闭建筑缺氧房间的富氧特性及富氧效果的影响. 结果表明: 非空调工况下, 送氧口个数、送氧口管径、送氧流量及送氧方式不同, 所形成的富氧区域差别较大, 宜采用管径为6 mm的相背45°的双送氧口进行送氧, 所形成的富氧面积为最大; 空调工况下, 送氧口个数、送氧口管径、送氧流量及气流组织形式不同, 所形成的富氧区域形状大体相似, 均为\椭圆\形状, 宜采用送氧口管径为6 mm的单送氧口且异侧上送下回的气流组织形式; 空调工况下, 送氧流量相同时, 送风风速为0.85 m·s-1所形成的富氧面积比送风风速为1 m·s-1所形成的富氧面积大约20%;当送风风速均为0.85 m·s-1, 送氧流量为1.5 m3·h-1所形成的富氧面积约为0.96 m2, 该富氧面积与单人次活动范围面积相当, 适宜作为空调工况下缺氧房间单人次的富氧基础供氧量. 模拟结果可为缺氧空调房间供氧装置的选择、布置、降低新风量、降低空调能耗等方面提供参考
文档格式:DOC 文档大小:222KB 文档页数:4
一、名词解释(每小题2分,共20分) 1.农产品加工:以农业的原始产品为原料,用物理、化学的方法以保持和提高农 产品的品质或改变其形状的初级工业过程。 2.悬浮速度:物料在垂直上升的匀速气流中受到的作用力与重力相同时,物料颗 粒既不上升,也不下降,处于悬浮状态,此时气流的速度叫物料的悬浮速 度
文档格式:PPT 文档大小:66.5KB 文档页数:6
一、定义: 气旋——气旋是占有三度空间,在同一高度上中心气 压低于四周的大尺度涡旋。在北半球,气旋 范围内气流作逆时针旋转,南半球相反。 反气旋——反气旋是占有三度空间,在同一高度上中心 气压高于四周的大尺度涡旋。在北半球,反 气旋范围内气流作顺时针旋转,南半球相反
12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 185 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有