第6章 Fortran的数据结构 §1数据结构 §2双精度类型数据 §3复型数据 §4四种数值型数据之间的运算及 转换规则 §5字符型数据 2021/2/24
1 2021/2/24 第6章 Fortran的数据结构 §1 数据结构 §2 双精度类型数据 §3 复型数据 §4 四种数值型数据之间的运算及 转换规则 §5 字符型数据
§1数据结枸(128-129) 2 程序是为解决问题而编制。解决问题面临的对 象是数据和算法。 程序=算法+数据 算法有三种基本结构:顺序、选择、循环。 数据有没有结构问题呢?如果有,又使用什么 样的结构? 数据结构的形式化定义:数据结构是一个二元组 Data-Structure=(D, s) 其中:D是数据元素的有限集,S是D上关系的有 限集。 §1数据结构 2021/2/24
2 2021/2/24 程序是为解决问题而编制。解决问题面临的对 象是数据和算法。 程序=算法+数据 算法有三种基本结构:顺序、选择、循环。 数据有没有结构问题呢?如果有,又使用什么 样的结构? 数据结构的形式化定义:数据结构是一个二元组 Data-Structure=(D , S) 其中:D是数据元素的有限集,S是D上关系的有 限集。 §1 数据结构(p128-129) §1 数据结构
一般来说,高级程序设计语言使用三种数据结3 构,即基本数据结构、构造数据结构和指针数据结 构。 基本数据结构 基本数据结构又称基本类型(从数据类型角度 讲),是指不可再分的基本数据项。 Fortran77基本类型有六种:整型、实型、双精 度型、复型、逻辑型、字符型 例如:125、32.5、0.1230-3、(10.8,5)属于 基本类型的数据,都是最基本的数据项。 本章将介绍双精度型、复型和字符型。 §1数据结构 2021/2/24
3 2021/2/24 §1 数据结构 一般来说,高级程序设计语言使用三种数据结 构,即基本数据结构、构造数据结构和指针数据结 构。 一、基本数据结构 基本数据结构又称基本类型(从数据类型角度 讲),是指不可再分的基本数据项。 Fortran77基本类型有六种:整型、实型、双精 度型、复型、逻辑型、字符型。 例如:125、32.5、0.123e-3、 (10.8 , 5.)属于 基本类型的数据,都是最基本的数据项。 本章将介绍双精度型、复型和字符型
二、构造数据结构(构造类型) 由基本数据结构按一定规则构造而成的复合型数据。包 括数组(教材第9章)、记录等。 记录是数据库系统中的术语。一个基本的数据库文件是 个二维表格,表中的每一行称为一个记录。 如某班同学毕业后的通讯录可以包括以下基本内容: 姓名性别城市单位职务手机 张三男北京**局长1391234561 李四女上海**局总工1381234562 王五男南京***院长1371234563 iii §1数据结构 2021/2/24
4 2021/2/24 二、构造数据结构(构造类型) 由基本数据结构按一定规则构造而成的复合型数据。包 括数组(教材第9章)、记录等。 记录是数据库系统中的术语。一个基本的数据库文件是 一个二维表格,表中的每一行称为一个记录。 如某班同学毕业后的通讯录可以包括以下基本内容: 姓名 性别 城市 单 位 职 务 手机 张三 男 北京 * * * 局长 1391234561 李四 女 上海 * * * 局总工 1381234562 王五 男 南京 * * * 院长 1371234563 ┇ ┇ ┇ ┇ ┇ ┇ §1 数据结构
姓名」性别城市单位职务手机5 张三男北京**局长1391234566 李四女上海* 局总工1381234567 王五男南京**院长1371234568 每个记录(即每行)由若干个基本数据项组成,数据项 的类型可以不同。 个记录相当于一个结构体,多个记录相当于一个结构 体数组。 将全部记录保存在数据库系统中,即为一个数据库文件 (相当于eXce中的一个工作表)。 将记录保存在普通文件中,即为数据文件(第13章将 涉及)。 §1数据结构 2021/2/24
5 2021/2/24 每个记录(即每行)由若干个基本数据项组成,数据项 的类型可以不同。 一个记录相当于一个结构体,多个记录相当于一个结构 体数组。 将全部记录保存在数据库系统中,即为一个数据库文件 (相当于excel中的一个工作表)。 将记录保存在普通文件中,即为数据文件(第13章将 涉及)。 §1 数据结构 姓名 性别 城市 单 位 职 务 手机 张三 男 北京 * * * 局长 1391234566 李四 女 上海 * * * 局总工 1381234567 王五 男 南京 * * * 院长 1371234568 ┇ ┇ ┇ ┇ ┇ ┇
指针数据结构(指针类型) 6 主要用于构造各种形式的动态数据结构,如链 表( linked lis)、队列( queue)、堆栈( stack、树 (tree、图( graph)。 Fortran没有指针类型。 §1数据结构 2021/2/24
6 2021/2/24 三、指针数据结构(指针类型) 主要用于构造各种形式的动态数据结构,如链 表(linked list)、队列(queue)、堆栈(stack)、树 (tree)、图(graph)。 Fortran没有指针类型。 §1 数据结构
§2双精度类型数据(1129130)7 双精度型数据的有效位数和范围是实型数据的两倍,在 计算机中,以两倍于实型的字节数来存储一个双精度数。 、双精度型常数 必须用指数形式表示,将实数的e或E换成d或D即可。 如123456789在 Fortran中可表示为实型或双精度型: ①表示为实型:123456789或12345678901。 ②表示为双精度型:123456789d1。 注意①和②两种表示的区别:设实型为7位有效数字, 双精度型为15位有效数字,则: ①实际表示的数为1234568(共7位有效数字) ②实际表示的数为123456789000000(15位有效) §2双精度类型数据 2021/2/24
7 2021/2/24 §2 双精度类型数据(p129-130) 双精度型数据的有效位数和范围是实型数据的两倍,在 计算机中,以两倍于实型的字节数来存储一个双精度数。 一、双精度型常数 必须用指数形式表示,将实数的e或E换成d或D即可。 如12.3456789在Fortran中可表示为实型或双精度型: ①表示为实型:12.3456789或1.23456789e1。 ②表示为双精度型:1.23456789d1。 注意①和②两种表示的区别:设实型为7位有效数字, 双精度型为15位有效数字,则: ①实际表示的数为12.34568(共7位有效数字) ②实际表示的数为12.3456789000000(15位有效) §2 双精度类型数据
二、双精度型变量 8 须用类型说明语句 double precision或mpc语句加 以说明。 $A: double precision a, b,c implicit double precision(a-c) 如:设实型为7位有效数字,双精度型为15位有效数 字,问下面三个变量中实际存放的数是多少? real rx double precision dx, dy rx=1234567891234568 dx=123456789d0 12.3456789000000 dy=123456789 12.3456800000000 §2双精度类型数据 2021/2/24
8 2021/2/24 §2 双精度类型数据 二、双精度型变量 须用类型说明语句double precision或implicit语句加 以说明。 如: 如: double precision a , b , c implicit double precision (a-c) 设实型为7位有效数字,双精度型为15位有效数 字,问下面三个变量中实际存放的数是多少? real rx double precision dx , dy rx=12.3456789 dx=12.3456789d0 dy=12.3456789 12.34568 12.3456789000000 12.3456800000000
9 例6.1】求:S=+ -+∴ 2!3! 20 考虑该问题有较高 double precision s, z s=0.0d0 的精度要求,因此用 z=0.0d0 双精度类型进行计算。 do5,k=1,20 编程思路在上一章已 Z=Z/k 经讨论过。 S=S+Z 5 continue 需注意对z的定义 print ,s end §2双精度类型数据 2021/2/24
9 2021/2/24 【例6.1】求: 20! 1 3! 1 2! 1 1! 1 S = + + ++ §2 双精度类型数据 考虑该问题有较高 的精度要求,因此用 双精度类型进行计算。 编程思路在上一章已 经讨论过。 double precision s,z s=0.0d0 z=0.0d0 do 5 , k=1,20 z=z/k s=s+z 5 continue print*,s end 需注意对z的定义
§3复型数据(P131-134) 10 复型常量(复型常数) Fortran中的表示形式:用一对括号中由逗号分 开的两个实数来表示,第一个数表示复数的实部 第二个数表示复数的虚部。 二、复型变量 用类型说明语句 complex或mpc加以说明。 如: complex c,d implicit complex(x-z) 1.复型变量的赋值问题 53复型数据 2021/2/24
10 2021/2/24 §3 复型数据(p131-134) 一、复型常量(复型常数) Fortran中的表示形式:用一对括号中由逗号分 开的两个实数来表示,第一个数表示复数的实部, 第二个数表示复数的虚部。 二、复型变量 用类型说明语句complex或implicit加以说明。 如: 1. 复型变量的赋值问题 complex c , d implicit complex (x-z) §3 复型数据