笫6章调制与解调 6.1幅度调制 6.2角度调制 62.1角调调制的基本概念 622频率调制信号的性质 62.3实现频率调制的方法与电路 6.2.3.1实现方法:即直接调频和间接调频。 6232调频电路的技术指标 6.2.3.3变容二极管直接调频电路 6.2.3.4其他直接调频电路 624调频波的解调方法与电路 625数字信号的相位调制 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 1 笫6章 调制与解调 6.1 幅度调制 6.2 角度调制 6.2.1 角调调制的基本概念 6.2.2 频率调制信号的性质 6.2.3 实现频率调制的方法与电路 6.2.3.1 实现方法:即直接调频和间接调频。 6.2.3.2 调频电路的技术指标 6.2.3.3 变容二极管直接调频电路 6.2.3.4 其他直接调频电路 6.2.4 调频波的解调方法与电路 6.2.5 数字信号的相位调制
623实现频率调制的方法与电路 6.2.3.1实现方法:即直接调频和间接调频。 1、直接调频 直接调频就是直接使振荡器的频率随调制信号成线性关系 变化。例如,在一个由LC回路决定振荡频率的振荡器中,将 个可变电抗元件接入回路,使可变电抗元件的电抗值随调 制电压而变化。即可使振荡器的振荡频率随调制信号而变化。 如:变容二极管直接调频电路。 优点:易于得到比较大的频偏 缺点:中心频率的稳定度不易做得很高。 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 2 6.2.3 实现频率调制的方法与电路 6.2.3.1 实现方法:即直接调频和间接调频。 1、直接调频 ▪ 直接调频就是直接使振荡器的频率随调制信号成线性关系 变化。例如,在一个由LC回路决定振荡频率的振荡器中,将 一个可变电抗元件接入回路,使可变电抗元件的电抗值随调 制电压而变化。即可使振荡器的振荡频率随调制信号而变化。 如:变容二极管直接调频电路。 ▪ 优点:易于得到比较大的频偏。 ▪ 缺点:中心频率的稳定度不易做得很高
6.2.3.1实现方法:即直接调频和间接调频。(续) 间接调频 返回 利用调频波与调相波之间的关系 n(O0=odg+∫m(x+9 VpM(t)=Vcm cos[act+k,vn(t)+81 先将调制信号进行积分处理,再进行调相而得到调频波, 其方框如下图所示。 优点:载波中心频率稳定度较好。 载波 FM 振荡器 缓冲级 调相器 晶体 振荡器 积分器 v(↑
2001年9月--12月 《通信电路原理》--无九 3 6.2.3.1 实现方法:即直接调频和间接调频。 (续) ▪ 先将调制信号进行积分处理,再进行调相而得到调频波, 其方框如下图所示。 ▪ 优点:载波中心频率稳定度较好。 2、间接调频 ▪ 利用调频波与调相波之间的关系: ( ) cos[ ( ) ] 0 0 = + + v t V t K v d f t FM cm c F ( ) cos[ ( ) ] = + 1 + 0 v t V t K v t PM cm c p f 返回
62.32调频电路的技术指标 1、调制特性 被调振荡器的频率偏移与调制电压 g(v,) 的关系称为调制特性,并表示为: fe 在一定电压范围内,调制特性应近似为直线特性 2、调制灵敏度 △f 调制电压变化单位数值所产生的 F 频率偏移称为调制灵敏度 △ 3、最大频偏An 在调制电压作用下,所能达到的最大频率偏移。 4、中心频率稳定度 调频信号的瞬时频率是以稳定的中心频率(载波频率)为 基准变化的。如果中心频率不稳定,就有可能使调频信号的 频谱落到接收机通带范围之外,以致不能保证正常通信。 因此,对于调频电路,不仅要满足频偏的要求,而且要使 中心频率保持足够高的稳定度 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 4 6.2.3.2 调频电路的技术指标 1、调制特性 ▪ 被调振荡器的频率偏移与调制电压 的关系称为调制特性,并表示为: ( ) f c g v f f = ▪ 在一定电压范围内,调制特性应近似为直线特性。 2、调制灵敏度 ▪ 调制电压变化单位数值所产生的 频率偏移称为调制灵敏度。 f F v f S = 3、最大频偏 ▪ 在调制电压作用下,所能达到的最大频率偏移。 m f 4、中心频率稳定度 ▪ 调频信号的瞬时频率是以稳定的中心频率(载波频率)为 基准变化的。如果中心频率不稳定,就有可能使调频信号的 频谱落到接收机通带范围之外,以致不能保证正常通信。 因此,对于调频电路,不仅要满足频偏的要求,而且要使 中心频率保持足够高的稳定度
6.2.3.3变容二极管直接调频电路 1)变容二极管的特性 变容管是利用PN结来实现的。PN结的 电容包括势垒电容和扩散电容两部分 O 变容管利用的是势垒电容, 所以PN结是反向偏置的。 =0时变容管的等效电容为Co。 变容指数为y,它是一个取决于 PN结的结构和杂质分布情况的系数 缓变结变容管,其y=1/3 突变结变容管,其y=1/2 超突变结变容管,其y=2 接触电位差为,硅管约为07V, 锗管约为0.2V。 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 5 6.2.3.3 变容二极管直接调频电路 (1)变容二极管的特性 ▪ 变容管是利用PN结来实现的。 PN结的 电容包括势垒电容和扩散电容两部分。 (1 ) 0 V C C + = ▪ 变容管利用的是势垒电容, 所以PN结是反向偏置的。 0 V C ▪ V = 0时变容管的等效电容为 C0 。 ▪ 变容指数为 ,它是一个取决于 PN结的结构和杂质分布情况的系数。 缓变结变容管, 其 = 1/3; 突变结变容管, 其 = 1/2 ; 超突变结变容管,其 = 2。 ▪ 接触电位差为 ,硅管约为0.7V, 锗管约为0.2V。
(2)变容二极管的调制特性分析 () +E 加到变容管两端的电压, 它由三部分组成: R 即偏置电压 B 调制电压v/() R,+CP和回路振荡电压 附图二 通常,回路振荡电压幅度较小,可以认为变容管所呈现的电容 主要由偏置电压Vn和调制电压v/(t)决定。 假定调制信号为单频余弦信号,v(1)=1 Om cos!t 则加于变容管两端的电压v为 B J、cost 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 6 (2)变容二极管的调制特性分析 ▪ 加到变容管两端的电压, 它由三部分组成: 即偏置电压 , 调制电压 和回路振荡电压。 VB v (t) f ▪ 通常,回路振荡电压幅度较小,可以认为变容管所呈现的电容 主要由偏置电压 和调制电压 决定。 VB v (t) f ▪ 假定调制信号为单频余弦信号, , 则加于变容管两端的电压 v 为: v t V t f ( ) = m cos v V V t = B + m cos 附图一
(2)变容二极管的调制特性分析(续1) 1、大频偏调制特性分析 +e R R L3本C BL R,C P C C +C (1+11) V=VR+VOm cos S2t 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 7 (2)变容二极管的调制特性分析 (续1) 1、大频偏调制特性分析: C C C C C C C C C C + = + 2 2 1 (1 ) 0 V C C + = v V V t = B + m cos
(2)变容二极管的调制特性分析(续2) 得 0 (1+B+V。cos9t V gmn cos Q2t] 0 1+-)[1+ B+o os&2t (1+m cos s2t) 式中:(1+By表示变容管在只有偏置电压B作用时 所呈现的电容 em VB+p称为电容调制度,因Vm<VB,故m2<1 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 8 (2)变容二极管的调制特性分析 (续2) ▪ 得: 式中: 表示变容管在只有偏置电压 作用时 所呈现的电容。 (1 ) ' 0 0 VB C C + = VB + 称为电容调制度,因 ,故 。 = B m c V V m Vm VB 1 mc (1 cos ) (1 ) [1 cos ] ) [(1 ) cos ] cos (1 ' 0 0 0 0 m t C t V V V C t V V C V V t C C c B B m B m B m c + = + + + = + + = + + =
(2)变容二极管的调制特性分析(续3) 返回 可得振荡频率的表示式为 [1+m, cos Q2t /2=f[1+m cos Q2t7/ 2 2丌√LC 利用展开式 (1+x)=1+mx+1n(n-1)x2+n(n-1)n-2)x3+… 可展开为: f=f[l+m cos Qt+lr m2CoS9)2+…] fll+m cos Q2t+ (-1)n l)m2cos29t+…] 可得调制特性为: m cos Q2t+c-1)m 82 82 -1)m=cos2_2t+ 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 9 (2)变容二极管的调制特性分析 (续3) 可展开为: ( 1)( 2) 1 3! 1 ( 1) 2! 1 (1 ) 1 2 3 + x = + nx + n n − x + n n − n − x + x n 1) cos 2 ] 2 ( 8 1) 2 ( 8 cos 2 [1 1)( cos ) ] 2 ( 2! 2 1 cos 2 [1 2 2 2 = + + − + − + = + + − + f m t m m t f f m t m t c c c c c c c = + − + − + − m t m m t f f f c c c c c 1) cos 2 2 ( 8 1) 2 ( 8 cos 2 2 2 ▪ 可得调制特性为: 利用展开式: ▪ 可得振荡频率的表示式为: / 2 2 ' 0 [1 cos ] [1 cos ] 2 1 2 1 m t f m t LC LC f c c c C = = + = + 返回
(2)变容二极管的调制特性分析(续4) 上图 上式表明: 有与调制信号成正比的成分。2句cos?t 有常数成分,产生了中心频率的偏移 1) 有与调制信号频率各次谐波成比例的成分,从而使频率调制 过程产生了非线性失真。 1)m- cos 2Q2t+ 82 为了减小非线性失真,在变容管调频电路中,总是设法使 变容管工作在y=2的区域 2、小频偏调制特性分析(略): c+c 设法使变容管工作在y=1的区域, 可以近似实现线性调频的功能。 2001年9月-12月 《通信电路原理》-无九
2001年9月--12月 《通信电路原理》--无九 10 (2)变容二极管的调制特性分析 (续4) 上式表明: ▪ 有与调制信号成正比的成分。 m t c cos 2 ▪ 有常数成分,产生了中心频率的偏移。 2 1) 2 ( 8 − mc ▪ 有与调制信号频率各次谐波成比例的成分,从而使频率调制 过程产生了非线性失真。 −1)mc cos 2t + 2 ( 8 2 ▪ 为了减小非线性失真,在变容管调频电路中,总是设法使 变容管工作在 = 2 的区域。 2、小频偏调制特性分析(略): C C C C C C C C + = + 2 2 1 ▪ 设法使变容管工作在 的区域, 可以近似实现线性调频的功能。 =1 上图