当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold

资源类别:文库,文档格式:PDF,文档页数:39,文件大小:8.45MB,团购合买
点击下载完整版文档(PDF)

Phase Transition of Hypergraph Matchings Yitong Yin Nanjing University Joint work with:Jinman Zhao (Nanjing Univ./U Wisconsin)

Phase Transition of Hypergraph Matchings Joint work with: Jinman Zhao (Nanjing Univ. / U Wisconsin) Yitong Yin Nanjing University

hardcore model monomer-dimer model undirected graph G=V,E) activity入 configurations: independent sets matchings M weight: w(D=入M w(M)=入M partition function: Z=1:independent sets in GW(D =EM:matchingsin G W(M) Gibbs distribution: u(D)=w(D/Z u(M)=w(M)/Z approximate counting: FPTAS/FPRAS for Z sampling:sampling from u within TV-distance s in time poly(n,log1/8)

hardcore model monomer-dimer model configurations: independent sets I matchings M weight: w(I) = λ|I| w(M) = λ|M| partition function: Z = ΣI:independent sets in G w(I) Z = ΣM:matchings in G w(M) Gibbs distribution: μ(I) = w(I) / Z μ(M) = w(M) / Z approximate counting: sampling: FPTAS/FPRAS for Z sampling from μ within TV-distance ε in time poly(n, log1/ε) G = (V,E) undirected graph λ λ λ λ λ λ λ activity λ λ λ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[v∈I|o] hardcore model: I-u →∞ (d+1)-regular tree ---0 boundary condition o:fixing leaves at level l to be occupied/unoccupied by I WSM:Pr[lv∈I|o]does not depend on o when l-→o uniqueness threshold:Xc= (d-1)d+1) ●入≤入c台VSM holds on(d+l)-regular tree台Gibbs measure is unique ·Veitz'06]:λe inapproximable unless NP=RP

(d+1)-regular tree ` ! 1 v boundary condition σ : fixing leaves at level l to be occupied/unoccupied by I Pr[v 2 I | ￾] Decay of Correlation ￾c = dd (d ￾ 1)(d+1) hardcore model: (Weak Spatial Mixing, WSM) uniqueness threshold: • λ ≤ λc 㱻 WSM holds on (d+1)-regular tree 㱻 Gibbs measure is unique • [Weitz ‘06]: λ λc 㱺 inapproximable unless NP=RP WSM: Pr[v∈I | σ] does not depend on σ when l→∞ I ∼μ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[e∈M|o]e monomerdimer model: L→0∞ M-u regular tree 99…999 boundary condition o:fixing leaf-edges at level l to be occupied/unoccupied by M WSM:Pr[e∈M|]does not depend on o when /∞ WSM always holds+Gibbs measure is always unique [Jerrum,Sinclair'89]:FPRAS for all graphs [Bayati,Gamarnik,Katz,Nair,Tetali'08]:FPTAS for graphs with bounded max-degree

regular tree ` ! 1 boundary condition σ : fixing leaf-edges at level l to be occupied/unoccupied by M Decay of Correlation (Weak Spatial Mixing, WSM) • WSM always holds 㱻 Gibbs measure is always unique • [Jerrum, Sinclair ’89]: FPRAS for all graphs • [Bayati, Gamarnik, Katz, Nair, Tetali ’08]: FPTAS for graphs with bounded max-degree WSM: Pr[e∈M | σ] does not depend on σ when l→∞ monomer-dimer model: Pr[e 2 M | ￾] e M ∼μ

CSP (Constraint Satisfaction Problem) 2 degree degree =2 max-degree≤d ≤d matching constraint matchings: variables xi∈{0,1} (at-most-1)

CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: variables xi 2 {0, 1} matching constraint (at-most-1) degree ≤ d degree = 2 max-degree ≤ d

CSP (Constraint Satisfaction Problem) degree degree =2 max-degree≤d ≤d 8 matching constraint matchings: variables xi∈{0,1} (at-most-1) matching constraint independent sets: variables i∈{0,l} (at-most-1) partition function: Z= 入川1 i∈{0,l}n satisfying all constraints

CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: independent sets: variables xi 2 {0, 1} matching constraint (at-most-1) matching constraint (at-most-1) variables xi 2 {0, 1} max-degree ≤ d partition function: Z = X ~x2{0,1}n satisfying all constraints ￾k~xk1 degree ≤ d degree = 2

CSP (Constraint Satisfaction Problem) deg≤d+l deg≤k+l c2 t> c☒ 4 c函 a Boolean at-most-1 variables constraints partition function: ∑ 入川1 i∈{0,1}n satisfying all constraints

CSP (Constraint Satisfaction Problem) Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 Z = X ~x2{0,1}n satisfying all constraints ￾k~ xk1 partition function: at-most-1 constraints

Hypergraph matching hypergraph =(V,E) vertex set V hyperedge e∈E,eCV a matching is an subset MCE of disjoint hyperedges partition .U] Zλ(H)= ∑ λM川 .U4 i. functions: M:matching of H ,5 .29 8 es .6 e2 es Gibbs λXM distribution: u(M)= Z(孔)

v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 Hypergraph matching Z￾(H) = X M: matching of H ￾|M| hypergraph H = (V,E) vertex set V hyperedge e 2 E, e ⇢ V a matching is an subset M⊂E of disjoint hyperedges µ(M) = ￾|M| Z￾(H) partition functions: Gibbs distribution:

matchings in hypergraphs of max-degree sk+1 and max-edge-sizes d+1 matching 01 .4 th2. incidence graph primal: .5 ,28 e3 6 9 e2 e3 5 6 dual: CSP defined by matching(packing)constraint 7 06 independent set independent sets in hypergraphs of max-degree sd+1 and max-edge-size sk+1 independent sets:a subset of non-adjacent vertices (to be distinguished with:vertex subsets containing no hyperedge as subset)

v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 matchings in hypergraphs of max-degree ≤ k+1 and max-edge-size ≤ d+1 v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * incidence graph primal: dual: v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * matching independent set CSP defined by matching(packing) constraint independent sets in hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 independent sets: a subset of non-adjacent vertices (to be distinguished with: vertex subsets containing no hyperedge as subset)

Known results deg≤d+l ☑deg≤k+l C2 independent sets of hypergraphs of max-degree≤d+1 and max-edge-size≤k+l C4 cs partition function: Z= 入川1 元∈{0,1}n satisfying Boolean at-most-1 all constraints variables constraints Classification of approximability in terms of )d,k? ●k=l:hardcore model d=1:monomer-dimer model ●forλ=1: [Dudek,Karpinski,Rucinski,Szymanska 2014]:FPTAS when d=2,k<2 [Liu and Lu 2015]FPTAS when d=2,k<3

Known results • k=1: hardcore model • d=1: monomer-dimer model •for λ=1: •[Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when d=2, k≤2 •[Liu and Lu 2015] FPTAS when d=2, k≤3 Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 at-most-1 constraints Z = X ~x2{0,1}n satisfying all constraints ￾k~ xk1 partition function: independent sets of hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 Classification of approximability in terms of λ, d, k ?

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共39页,可试读13页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有