当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

厦门大学:《高级经济计量学》讲义 第四章 多元线性回归模型

资源类别:文库,文档格式:PPT,文档页数:15,文件大小:194KB,团购合买
Classical Multiple linear regression model (CMLRM): 1. model 2. random sample
点击下载完整版文档(PPT)

Chapter3多元线性回归模型 (Muitiple linear regression model) You are required to get familiar with matrix algebra for mastering this chapter

Chapter 3 多元线性回归模型 (Multiple linear regression model) You are required to get familiar with matrix algebra for mastering this chapter!

a Classical Multiple linear regression model (CMLRM) 1. model X=b+bX1+…+ 6, X+E 2. random sample M, XI k y=b+bx1+…+b如+1(=1,…,n)

◼ Classical Multiple linear regression model (CMLRM): 1. model 2. random sample Y b b X b X 0 1 1 k k = + + + + 1 { ; , } Y X X i i ki 0 1 1 ( 1, , ) i i k ki i Y b b X b X i n = + + + + = 

Matrix form Y=Xb+8 k1 8 1Ⅹ 2,b Ⅹ

Matrix form: 11 1 0 1 1 12 2 1 2 1 1 1 , , , 1 k k n n kn k n X X b Y X X b Y X X b    = +                       = = = =                         Y Xb ε Y X b ε

3. Model assumption: 1.E()=0 2. E(Ge=oI,(I, is a unit matrix) 3. Xis non-random 4. rank(X)=k+l< n 5. Normality assumption E~N(0,o2)(i=1,…,n)

3. Model assumption: 1. 2. 3. is non-random. 4. 5. Normality assumption E( ) ε = 0 2 E( ) ( is a unit matrix)  n n εε = I I X rank( )= 1 X k n +  2 (0, ) ( 1, , )   i N i n =

assumptions 1 and 5 imply that the errors are Independent As in the case of the univariate linear regression models, we can estimate the regression coefficients of the multiple linear regression models by using the ordinary least squares procedure. In matrix form the olse is b=(XX XY

assumptions 1 and 5 imply that the errors are Independent. As in the case of the univariate linear regression models, we can estimate the regression coefficients of the multiple linear regression models by using the ordinary least squares procedure. In matrix form, the OLSE is 1 ˆ ( − b X X) X Y =  

4. OLSE for the CMlrM b=(XXXY 5. Properties of the olse for the cMlRM E(b)=b 2. var(b)=El(b-b)(b-b=O(XX) 3. The gauss-Markoy theorem is still true The ol se for the cmlrm is the blue

4. OLSE for the CMLRM 5. Properties of the OLSE for the CMLRM 1. 2. 3. The Gauss-Markov theorem is still true: The OLSE for the CMLRM is the BLUE. 1 ˆ ( − b X X) X Y =   E( ) b b ˆ = 2 1 ˆ ˆ ˆ var( ) E[( )( ) ] ( )  − b b b b b X X = − − =  

6. Residual and estimation of 2 the population variance o 1. Residual e=Y-Y=Y-Xb=[-X(XXXY PY(P=I-X(XX) X 1) P is idempotent(幂等的) 2)E(e)=0 3)var(e=e(ee)=oP 4) >2=rY-bX'Y=tr(ee)

6. Residual and Estimation of the population variance 1. Residual 1) P is idempotent (幂等的) 2) 3) 4) 2  ˆ ˆ [ ] ( ) = − = − = −   = = −   -1 -1 e Y Y Y Xb I X(X X) X Y PY P I X(X X) X E( ) e 0 = 2 var( ) E( ) e ee P = =   2 1 ˆ tr( ) n i i e =  = − = Y Y bX Y ee   

2. Estimator for O ee n-(k+1)n-(k+1) E(a2)=E( 2 O k-1

2. Estimator for 2  2 2 ˆ ( 1) ( 1) i e n k n k   = = − + − +  e e 2 2 ( ) ( ) ˆ 1 e e E E n k    = = − −

7. Goodness-of-fit testing 1)Total sum of squares TSS=∑(x-y)=YY-ny2 2)Explained sum of squares ESS=∑(y-y)2-∑e2=bXY-ny2 2 Coefficient of determination 2 ESS ee b'XY-ny R TSs∑(x-Y2)YY-ny

7. Goodness-of-fit testing 1. 1) Total sum of squares: 2) Explained sum of squares: 2. Coefficient of determination: 2 2 TSS ( ) Y Y nY i = − = −  Y Y 2 2 2 ESS ( ) ˆ Y Y e nY i i = − − = −   b X Y   2 2 2 2 ESS ˆ 1 TSS ( ) i nY R Y Y nY    − = = − =  − −  e e b X Y Y Y

3. Adjusted R-squared ee 2 R2=1 n-(k+1)_1(m-1)(1-R) n-k-1

3. Adjusted R-squared: 2 2 2 ( 1) ( 1)(1 ) 1 1 ( ) 1 1 i n k n R R Y Y n k n  − + − − = − = − − − − −  e e

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共15页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有