点击切换搜索课件文库搜索结果(105)
文档格式:PDF 文档大小:1.38MB 文档页数:6
采用ER2209焊丝对双相不锈钢SAF2205与微合金管线钢X65进行熔化极气体保护焊接,获得了具有良好力学性能的异种钢焊接接头.焊接接头不同区域显微组织观察和成分分析表明,微合金钢与不锈钢焊缝间存在异金属熔合区和第二类边界线,熔合区存在Ni、Cr的浓度梯度分布,且硬度高于两侧的焊缝和母材.通过宏观拉伸、缺口拉伸和低温冲击实验测试了焊接接头的力学性能,并获得了接头不同部位在1mol·L-1 NaCl溶液中的极化曲线.拉伸试样断裂发生于强度相对较低的微合金钢母材.焊缝金属的缺口拉伸强度和冲击韧性均略低于双相不锈钢母材,但腐蚀电位略高于母材.微合金钢热影响区与母材力学性能相当,腐蚀电位略高于母材
文档格式:PDF 文档大小:930.38KB 文档页数:8
为了研究14Cr12Ni2WMoVNb钢QPQ(淬火-抛光-淬火)处理后的氧化膜对渗层室温摩擦磨损和腐蚀性能的影响,利用金相、X射线衍射分析、扫描电镜、能谱分析、划痕仪、摩擦磨损试验机和电化学工作站对试样进行了表征.结果表明:氧化膜对渗层室温摩擦学性能的影响与载荷大小有关.在摩擦时间均为4 min情况下,载荷较小(50 N)时,氧化膜可以降低摩擦系数和体积磨损率;载荷较大(100 N)时,氧化膜被破坏无法降低体积磨损率.氧化膜可明显提高渗层的耐腐蚀性能.含氧化膜试样的极化曲线有明显的钝化区,点蚀电位为-13 mV,去除氧化膜试样在盐雾腐蚀12 h后表面有大范围的腐蚀区域,而含氧化膜试样盐雾腐蚀48 h后才有大区域腐蚀发生
文档格式:PDF 文档大小:6.48MB 文档页数:8
将传统涂料与改性石墨烯复合,在7A52铝合金基体上制备防腐性能优良的石墨烯复合涂层.采用电化学噪声技术监测石墨烯改性涂层在质量分数为3.5%的NaCl溶液中的初期腐蚀过程.通过电化学噪声的时域分析、时域统计分析、傅里叶变换、频域分析,对不同石墨烯含量复合涂层的腐蚀过程进行研究,确定石墨烯具有最佳防腐蚀性能含量,根据电化学噪声特征参数的变化对涂层腐蚀情况进行具体研究.结果表明:添加不同含量的改性石墨烯,涂层在一定时间内出现不同程度的电化学噪声;当石墨烯涂层发生腐蚀时,电流电位变化过程为:波动范围由小变大→两者同步波动→电位缓升急降→两者波动范围再次变小.涂层交流阻抗在高频区的阻抗值随改性石墨烯含量的增加而增加;涂层添加改性石墨烯后,涂层腐蚀电位明显正移,自腐蚀电流密度减小,涂层的耐腐蚀性能明显提高;不同石墨烯含量涂层在3.5% NaCl溶液浸泡后铝合金表面出现不同程度点蚀,质量分数1%的石墨烯涂层仅出现少量点蚀坑;结合交流阻抗、极化曲线结果以及铝合金表面腐蚀形貌,综合分析确定石墨烯质量分数为1%时涂层防腐蚀性能最佳
文档格式:PDF 文档大小:14.12MB 文档页数:10
采用激光熔覆与微弧氧化技术相结合在海洋钢表面制备了复合膜层.运用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)表征复合膜层的微观结构,采用极化曲线、电化学阻抗谱、腐蚀磨损实验和浸泡腐蚀实验等测试方法研究膜层在质量分数3.5%的NaCl水溶液中腐蚀行为,并与熔覆涂层和基体进行对比.结果表明:复合膜层主要分为内致密层和外疏松层,疏松层主要由γ-Al2O3组成,致密层主要由α-Al2O3组成,与基底层结合较好,复合膜层表面硬度最大能达到HV0.2 1423.3,比熔覆涂层高47.6%,其硬度较S355海洋钢有显著提升.基体在腐蚀和磨损交互作用中主要以腐蚀加速磨损为主,涂层在交互作用中主要以磨损加速腐蚀为主,在经过微弧氧化处理后,膜层的自腐蚀电位负移,钝态电流密度上升,抗磨蚀性能明显提高.熔覆涂层的浸泡腐蚀方式以点蚀为主,复合膜层腐蚀较轻微,阻抗模值最大能达到105.3 Ω·cm2,比熔覆层提高两个数量级,这表明复合处理可进一步提高涂层的耐腐蚀性
文档格式:PDF 文档大小:6.18MB 文档页数:8
传统湿法炼锌工艺采用纯铝板作为阴极,但随着锌精矿品位的降低,电解液中杂质离子含量增大,造成阴极腐蚀消耗增加.本文以铝锰合金为研究对象,研究锰作为添加元素,与铝形成良好铝锰合金阴极材料的电化学行为,进一步提高铝阴极的耐蚀性和电催化活性.采用交流阻抗、阴极极化曲线、恒电流极化曲线、塔菲尔曲线等分析方法,探讨不同Mn元素含量对铝锰合金在40℃恒温条件,Zn2+ 65 g·L-1和H2SO4 150 g·L-1溶液中电化学行为的影响.研究结果表明:相比纯铝电极,添加Mn元素的铝锰合金电极的耐蚀性普遍提高,腐蚀电流均减小;随着Mn含量的增加,腐蚀电流逐步降低,腐蚀电位与Mn含量增加无明显变化规律;当Mn质量分数为1.5%时腐蚀电流达最低(1.11 mA·cm-2),腐蚀电位最小(-1.0954 V);零电势下,表观电流密度i0受Mn元素的添加影响显著,i0随Mn含量增加呈现出先增大后减小的趋势,在Mn质量分数1.5%时达到最大值3.7462×10-16 mA·cm-2,远大于纯铝电极4.8027×10-33 mA·cm-2,整体变化幅度明显,电极的电催化活性得到提高;不同电流密度下的析氢过电位和纯铝电极的整体接近,电化学过程均为电化学传质步骤控制.综合考虑电极材料的耐蚀性和电催化活性,含Mn质量分数1.5%的铝锰合金可作为理想的电积锌阴极使用
首页上页4567891011
热门关键字
搜索一下,找到相关课件或文库资源 105 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有